Compound Markov Negative Binomial Distribution

No Thumbnail Available

Date

2016

Authors

Eryilmaz, Serkan
Eryılmaz, Serkan

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Let {Y-i}(i >= 1) be a sequence of {0,1} variables which forms a Markov chain with a given initial probability distribution and one-step transition probability matrix. Define N-n to be the number of trials until the nth success ("1") in {Y-i}(i >= 1). In this paper, we study the distribution of the random variable T = Sigma(Nn)(i=1) X-i, where {X-i}(i >= 1) is a sequence of independent and identically distributed random variables having a common phase-type distribution. The distribution of T is obtained by means of phase-type distributions. (C) 2015 Elsevier B.V. All rights reserved.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Compound random variable, Markov chain, Phase-type distribution

Turkish CoHE Thesis Center URL

Fields of Science

Citation

10

WoS Q

Q1

Scopus Q

Source

Volume

292

Issue

Start Page

1

End Page

6

Collections