On the Properties of the Limit <i>q</I>-bernstein Operator

dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:10:25Z
dc.date.available 2024-07-05T15:10:25Z
dc.date.issued 2011
dc.description.abstract The limit q-Bernstein operator B-q = B-infinity,B-q : C [0, 1]. C [0, 1] emerges naturally as a q-version of the Szasz-Mirakyan operator related to the q-deformed Poisson distribution. The latter is used in the q-boson theory to describe the energy distribution in a q-analogue of the coherent state. The limit q-Bernstein operator has been widely studied lately. It has been shown that B-q is a positive shape-preserving linear operator on Cinverted right perpendicular0, 1inverted left perpendicular with. parallel to B-q parallel to = 1. Its approximation properties, probabilistic interpretation, behavior of iterates, and the impact on the smoothness have been examined. In this paper, it is shown that the possibility of an analytic continuation of B(q)f into {z : vertical bar z vertical bar < R}, R > 1, implies the smoothness of f at 1, which is stronger when R is greater. If B(q)f can be extended to an entire function, then f is infinitely differentiable at 1, and a sufficiently slow growth of B(q)f implies analyticity of f in {z : vertical bar z-1 vertical bar < delta}, where delta is greater when the growth is slower. Finally, there is a bound for the growth of B(q)f which implies f to be an entire function. en_US
dc.identifier.doi 10.1556/SScMath.48.2011.2.1164
dc.identifier.issn 0081-6906
dc.identifier.issn 1588-2896
dc.identifier.scopus 2-s2.0-79958819672
dc.identifier.uri https://doi.org/10.1556/SScMath.48.2011.2.1164
dc.identifier.uri https://hdl.handle.net/20.500.14411/1320
dc.language.iso en en_US
dc.publisher Akademiai Kiado Zrt en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Limit q-Bernstein operator en_US
dc.subject positive operator en_US
dc.subject q-deformed Poisson distribution en_US
dc.subject analytic continuation en_US
dc.subject entire function en_US
dc.subject growth estimates en_US
dc.title On the Properties of the Limit <i>q</I>-bernstein Operator en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 179 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 160 en_US
gdc.description.volume 48 en_US
gdc.description.wosquality Q3
gdc.identifier.wos WOS:000291442500002
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections