On the Properties of the Limit <i>q</I>-bernstein Operator

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:10:25Z
dc.date.available2024-07-05T15:10:25Z
dc.date.issued2011
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractThe limit q-Bernstein operator B-q = B-infinity,B-q : C [0, 1]. C [0, 1] emerges naturally as a q-version of the Szasz-Mirakyan operator related to the q-deformed Poisson distribution. The latter is used in the q-boson theory to describe the energy distribution in a q-analogue of the coherent state. The limit q-Bernstein operator has been widely studied lately. It has been shown that B-q is a positive shape-preserving linear operator on Cinverted right perpendicular0, 1inverted left perpendicular with. parallel to B-q parallel to = 1. Its approximation properties, probabilistic interpretation, behavior of iterates, and the impact on the smoothness have been examined. In this paper, it is shown that the possibility of an analytic continuation of B(q)f into {z : vertical bar z vertical bar < R}, R > 1, implies the smoothness of f at 1, which is stronger when R is greater. If B(q)f can be extended to an entire function, then f is infinitely differentiable at 1, and a sufficiently slow growth of B(q)f implies analyticity of f in {z : vertical bar z-1 vertical bar < delta}, where delta is greater when the growth is slower. Finally, there is a bound for the growth of B(q)f which implies f to be an entire function.en_US
dc.identifier.citationcount2
dc.identifier.doi10.1556/SScMath.48.2011.2.1164
dc.identifier.endpage179en_US
dc.identifier.issn0081-6906
dc.identifier.issn1588-2896
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-79958819672
dc.identifier.startpage160en_US
dc.identifier.urihttps://doi.org/10.1556/SScMath.48.2011.2.1164
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1320
dc.identifier.volume48en_US
dc.identifier.wosWOS:000291442500002
dc.identifier.wosqualityQ3
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherAkademiai Kiado Zrten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount2
dc.subjectLimit q-Bernstein operatoren_US
dc.subjectpositive operatoren_US
dc.subjectq-deformed Poisson distributionen_US
dc.subjectanalytic continuationen_US
dc.subjectentire functionen_US
dc.subjectgrowth estimatesen_US
dc.titleOn the Properties of the Limit <i>q</I>-bernstein Operatoren_US
dc.typeArticleen_US
dc.wos.citedbyCount2
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections