Shape-Preserving Properties of the Limit <i>q</I>-durrmeyer Operator

dc.authorscopusid 57204587566
dc.authorscopusid 35610828900
dc.authorscopusid 35782583700
dc.contributor.author Yilmaz, Ovgu Gurel
dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Turan, Mehmet
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:23:09Z
dc.date.available 2024-07-05T15:23:09Z
dc.date.issued 2024
dc.department Atılım University en_US
dc.department-temp [Yilmaz, Ovgu Gurel] Recep Tayyip Erdogan Univ, Dept Math, TR-53100 Rize, Turkiye; [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye en_US
dc.description.abstract The present work aims to establish the shape-preserving properties of the limit q- Durrmeyer operator, D q for 0 < q < 1. It has been proved that the operator is monotonicity- and convexity-preserving. What is more, it maps a function m - convex along {q (j)}(infinity)(j =0) to a function m - convex along any sequence { xq( j )}(infinity)(j =0) , x is an element of (0, 1). (c) 2024 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.jmaa.2024.128463
dc.identifier.issn 0022-247X
dc.identifier.issn 1096-0813
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85192233885
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2024.128463
dc.identifier.uri https://hdl.handle.net/20.500.14411/2265
dc.identifier.volume 539 en_US
dc.identifier.wos WOS:001240049800001
dc.identifier.wosquality Q2
dc.institutionauthor Turan, Mehmet
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject q-Bernstein operator en_US
dc.subject q-Durrmeyer operator en_US
dc.subject q-differences en_US
dc.subject Shape-preserving property en_US
dc.title Shape-Preserving Properties of the Limit <i>q</I>-durrmeyer Operator en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Shape-preserving properties of the limit JMAA_2024_OGY_SO_MT.pdf
Size:
235.16 KB
Format:
Adobe Portable Document Format

Collections