Shape-Preserving Properties of the Limit <i>q</I>-durrmeyer Operator
dc.authorscopusid | 57204587566 | |
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 35782583700 | |
dc.contributor.author | Yilmaz, Ovgu Gurel | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Turan, Mehmet | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:23:09Z | |
dc.date.available | 2024-07-05T15:23:09Z | |
dc.date.issued | 2024 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Yilmaz, Ovgu Gurel] Recep Tayyip Erdogan Univ, Dept Math, TR-53100 Rize, Turkiye; [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye | en_US |
dc.description.abstract | The present work aims to establish the shape-preserving properties of the limit q- Durrmeyer operator, D q for 0 < q < 1. It has been proved that the operator is monotonicity- and convexity-preserving. What is more, it maps a function m - convex along {q (j)}(infinity)(j =0) to a function m - convex along any sequence { xq( j )}(infinity)(j =0) , x is an element of (0, 1). (c) 2024 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.1016/j.jmaa.2024.128463 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85192233885 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2024.128463 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2265 | |
dc.identifier.volume | 539 | en_US |
dc.identifier.wos | WOS:001240049800001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Turan, Mehmet | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | q-Bernstein operator | en_US |
dc.subject | q-Durrmeyer operator | en_US |
dc.subject | q-differences | en_US |
dc.subject | Shape-preserving property | en_US |
dc.title | Shape-Preserving Properties of the Limit <i>q</I>-durrmeyer Operator | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Shape-preserving properties of the limit JMAA_2024_OGY_SO_MT.pdf
- Size:
- 235.16 KB
- Format:
- Adobe Portable Document Format