Predicting Reliability of Software in Industrial Systems Using a Petri Net Based Approach: a Case Study on a Safety System Used in Nuclear Power Plant

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Context: Software reliability prediction in the early stages of development can be propitious in many ways. The combinatorial models used to predict reliability using architectures such as fault trees, binary decision diagrams, etc. have limitations in modeling complex system behavior. On the other hand, state-based models such as Markov chains suffer from the state-space explosion problem, and they need transition probability among different system states to measure reliability. These probabilities are usually assumed or are obtained from the operational profile for which the system should be used in the field. Objective: The objective of this paper is to present a method for predicting the reliability of software in industrial systems using a generalized stochastic Petri nets based approach. The key idea is to violate the assumption of state transition probabilities in the Markov chain. The state transition probabilities are calculated using Petri net transitions' throughput by performing stationary analysis under the consideration to identify and handle dead markings in the Petri net. Method: Initially, a generalized stochastic Petri net of the system under consideration is generated from the standard system's specification. Thereafter, dead markings are identified in the Petri net which are further removed to perform steady-state analysis. At last, a Markov model is generated based on the reachability graph of the Petri net, which is further used to predict the system reliability. Results: The presented method has been applied to a safety-critical system, Shut Down System-1, of a nuclear power plant, which is operational in the Canada Deuterium Uranium reactor. The predicted reliability of the system using this method is 99.99966% which has been validated using the specified system requirements. To further validate and generalize the results, sensitivity analysis is performed by varying different system parameters. Conclusions: The method discussed in this paper presents a step of performing structural analysis on the Petri net of the system under consideration to identify and handle dead markings on the Petri net. It further handles the issue of assuming transition probabilities among the system states by calculating them using Petri net transitions' throughput.

Description

Kumar, Dr Sandeep/0000-0003-0747-6776; Kumar, Sandeep/0000-0002-3250-4866; Kumar, Kuldeep/0000-0003-1160-9092; Mishra, Alok/0000-0003-1275-2050; Kumar, Sandeep/0000-0001-9633-407X

Keywords

Software reliability, Safety-critical systems, Petri net, Reliability model

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
7

Source

Information and Software Technology

Volume

146

Issue

Start Page

106895

End Page

Collections

PlumX Metrics
Citations

CrossRef : 1

Scopus : 13

Captures

Mendeley Readers : 20

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
5.63775934

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo