A robust on-line learning algorithm for intelligent control systems

dc.authoridKaynak, Okyay/0000-0002-4789-6700
dc.authoridEfe, Mehmet Önder/0000-0002-5992-895X
dc.authoridSui, Xinghua/0000-0001-6076-4318
dc.authoridYu, Xinghuo/0000-0001-8093-9787
dc.authorscopusid7004595398
dc.authorscopusid7004469974
dc.authorscopusid7005295049
dc.authorscopusid7404114597
dc.authorwosidKaynak, Okyay/H-5942-2011
dc.authorwosidEfe, Mehmet Önder/GPG-0907-2022
dc.authorwosidSui, Xinghua/HZM-5992-2023
dc.authorwosidYu, Xinghuo/D-8423-2013
dc.contributor.authorÖzbek, Mehmet Efe
dc.contributor.authorKaynak, O
dc.contributor.authorWilamowski, BM
dc.contributor.authorYu, XH
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:08:39Z
dc.date.available2024-07-05T15:08:39Z
dc.date.issued2003
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Mechatr Engn Incek, TR-06836 Ankara, Turkey; Bogazici Univ, Dept Elect & Elect Engn, TR-34342 Istanbul, Turkey; Univ Idaho, Grad Ctr, Boise, ID 83712 USA; RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3001, Australiaen_US
dc.descriptionKaynak, Okyay/0000-0002-4789-6700; Efe, Mehmet Önder/0000-0002-5992-895X; Sui, Xinghua/0000-0001-6076-4318; Yu, Xinghuo/0000-0001-8093-9787en_US
dc.description.abstractThis paper describes a novel error extraction approach for exploiting the strength of Levenberg-Marquardt (LM) optimization technique in intelligent control systems: Since the target value of the control signal is unknown, tuning of the controller parameters becomes a tedious task if the knowledge about the system and the environment is limited. The suggested methodology utilizes the sliding model control (SMC) technique. The error extraction scheme postulates the form of error on the applied control signal using the discrepancy from the prescribed reaching dynamics. The devised approach has been tested on the non-linear Duffing oscillator, which has been forced to follow a periodic orbit radically different from the natural one. The results obtained through a series of simulations have confirmed the high precision and robustness advantages without knowing the analytical details of the system under investigation. The issues of observation noise and the stability in the parametric space have approximately been addressed from the point of SMC perspective. Copyright (C) 2003 John Wiley Sons, Ltd.en_US
dc.identifier.citation1
dc.identifier.doi10.1002/acs.755
dc.identifier.endpage500en_US
dc.identifier.issn0890-6327
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-0041864036
dc.identifier.startpage489en_US
dc.identifier.urihttps://doi.org/10.1002/acs.755
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1075
dc.identifier.volume17en_US
dc.identifier.wosWOS:000184996300007
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectsliding mode controlen_US
dc.subjectLevenberg-Marquardt algorithmen_US
dc.subjectDuffing oscillatoren_US
dc.subjectlearningen_US
dc.titleA robust on-line learning algorithm for intelligent control systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication8a62c8fc-1922-41ab-b665-e9d69c5f2d85
relation.isAuthorOfPublication.latestForDiscovery8a62c8fc-1922-41ab-b665-e9d69c5f2d85
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections