A robust on-line learning algorithm for intelligent control systems

dc.authorid Kaynak, Okyay/0000-0002-4789-6700
dc.authorid Efe, Mehmet Önder/0000-0002-5992-895X
dc.authorid Sui, Xinghua/0000-0001-6076-4318
dc.authorid Yu, Xinghuo/0000-0001-8093-9787
dc.authorscopusid 7004595398
dc.authorscopusid 7004469974
dc.authorscopusid 7005295049
dc.authorscopusid 7404114597
dc.authorwosid Kaynak, Okyay/H-5942-2011
dc.authorwosid Efe, Mehmet Önder/GPG-0907-2022
dc.authorwosid Sui, Xinghua/HZM-5992-2023
dc.authorwosid Yu, Xinghuo/D-8423-2013
dc.contributor.author Efe, MÖ
dc.contributor.author Kaynak, O
dc.contributor.author Wilamowski, BM
dc.contributor.author Yu, XH
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T15:08:39Z
dc.date.available 2024-07-05T15:08:39Z
dc.date.issued 2003
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Mechatr Engn Incek, TR-06836 Ankara, Turkey; Bogazici Univ, Dept Elect & Elect Engn, TR-34342 Istanbul, Turkey; Univ Idaho, Grad Ctr, Boise, ID 83712 USA; RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3001, Australia en_US
dc.description Kaynak, Okyay/0000-0002-4789-6700; Efe, Mehmet Önder/0000-0002-5992-895X; Sui, Xinghua/0000-0001-6076-4318; Yu, Xinghuo/0000-0001-8093-9787 en_US
dc.description.abstract This paper describes a novel error extraction approach for exploiting the strength of Levenberg-Marquardt (LM) optimization technique in intelligent control systems: Since the target value of the control signal is unknown, tuning of the controller parameters becomes a tedious task if the knowledge about the system and the environment is limited. The suggested methodology utilizes the sliding model control (SMC) technique. The error extraction scheme postulates the form of error on the applied control signal using the discrepancy from the prescribed reaching dynamics. The devised approach has been tested on the non-linear Duffing oscillator, which has been forced to follow a periodic orbit radically different from the natural one. The results obtained through a series of simulations have confirmed the high precision and robustness advantages without knowing the analytical details of the system under investigation. The issues of observation noise and the stability in the parametric space have approximately been addressed from the point of SMC perspective. Copyright (C) 2003 John Wiley Sons, Ltd. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1002/acs.755
dc.identifier.endpage 500 en_US
dc.identifier.issn 0890-6327
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-0041864036
dc.identifier.startpage 489 en_US
dc.identifier.uri https://doi.org/10.1002/acs.755
dc.identifier.uri https://hdl.handle.net/20.500.14411/1075
dc.identifier.volume 17 en_US
dc.identifier.wos WOS:000184996300007
dc.identifier.wosquality Q2
dc.institutionauthor Özbek, Mehmet Efe
dc.language.iso en en_US
dc.publisher John Wiley & Sons Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject sliding mode control en_US
dc.subject Levenberg-Marquardt algorithm en_US
dc.subject Duffing oscillator en_US
dc.subject learning en_US
dc.title A robust on-line learning algorithm for intelligent control systems en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 8a62c8fc-1922-41ab-b665-e9d69c5f2d85
relation.isAuthorOfPublication.latestForDiscovery 8a62c8fc-1922-41ab-b665-e9d69c5f2d85
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections