Deep Neural Networks for Curbing Climate Change-Induced Farmers-Herdsmen Clashes in a Sustainable Social Inclusion Initiative

dc.contributor.author Okewu, Emmanuel
dc.contributor.author Misra, Sanjay
dc.contributor.author Fernandez Sanz, Luis
dc.contributor.author Ayeni, Foluso
dc.contributor.author Mbarika, Victor
dc.contributor.author Damasevicius, Robertas
dc.contributor.other Computer Engineering
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-10-06T10:58:07Z
dc.date.available 2024-10-06T10:58:07Z
dc.date.issued 2019
dc.description Fernandez Sanz, Luis/0000-0003-0778-0073; AYENI, FOLUSO/0000-0003-0989-7056; Misra, Sanjay/0000-0002-3556-9331 en_US
dc.description.abstract Peaceful coexistence of farmers and pastoralists is becoming increasingly elusive and has adverse impact on agricultural revolution and global food security. The targets of Sustainable Development Goal 16 (SDG 16) include promoting peaceful and inclusive societies for sustainable development, providing access to justice for all and building effective, accountable and inclusive institutions at all levels. As a soft approach and long term solution to the perennial farmers herdsmen clashes with attendant humanitarian crisis, this study proposes a social inclusion architecture using deep neural network (DNN). This is against the backdrop that formulating policies and implementing programmes based on unbiased information obtained from historical agricultural data using intelligent technology like deep neural network (DNN) can be handy in managing emotions. In this vision paper, a DNN-based Farmers-Herdsmen Expert System (FHES) is proposed based on data obtained from the Nigerian National Bureau of Statistics for tackling the incessant climate change induced farmers-herdsmen clashes, with particular reference to Nigeria. So far, many lives have been lost. FHES is modelled as a deep neural network and trained using farmers-herdsmen historical data. Input variables used include land, water, vegetation, and implements while the output is farmers/herders disposition to peace. Regression analysis and pattern recognition performed by the DNN on the farmers-herdsmen data will enrich the inference engine of FHES with extracted rules (knowledge base). This knowledge base is then relied upon to classify future behaviours of herdsmen/farmers as well as predict their dispositions to violence. Critical stakeholders like governments, service providers and researchers can leverage on such advisory to initiate proactive and socially inclusive conflict prevention measures such as, people-friendly policies, programmes and legislations. This way, conflicts can be averted, national security challenges tackled, and peaceful atmosphere guaranteed for sustainable development. en_US
dc.identifier.issn 1895-6912
dc.identifier.scopus 2-s2.0-85070490132
dc.identifier.uri https://hdl.handle.net/20.500.14411/8852
dc.language.iso en en_US
dc.publisher Politechnika Lubelska en_US
dc.relation.ispartof Problemy Ekorozwoju en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject climate change en_US
dc.subject deep neural network en_US
dc.subject farmers-herdsmen clashes en_US
dc.subject policies and programmes en_US
dc.subject social inclusion en_US
dc.title Deep Neural Networks for Curbing Climate Change-Induced Farmers-Herdsmen Clashes in a Sustainable Social Inclusion Initiative en_US
dc.title.alternative Wykorzystanie głębokich sieci neuronowych w ograniczaniu zmian klimatycznych związanych z konfliktem farmerów i pasterzy w ramach inicjatywy na rzecz zrównoważonej integracji społecznej en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Fernandez Sanz, Luis/0000-0003-0778-0073
gdc.author.id AYENI, FOLUSO/0000-0003-0989-7056
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.institutional Mısra, Sanjay
gdc.author.institutional Mısra, Sanjay
gdc.author.scopusid 56801895500
gdc.author.scopusid 56962766700
gdc.author.scopusid 25630384100
gdc.author.scopusid 56495155400
gdc.author.scopusid 6602627928
gdc.author.scopusid 6603451290
gdc.author.wosid Damaševičius, Robertas/E-1387-2017
gdc.author.wosid Fernandez-Sanz, Luis/J-4895-2012
gdc.author.wosid Ayeni, Foluso/IZE-2873-2023
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Okewu, Emmanuel] Univ Lagos, Lagos, Nigeria; [Misra, Sanjay] Covenant Univ, Canaanland, Nigeria; [Misra, Sanjay] Atilim Univ, Ankara, Turkey; [Fernandez Sanz, Luis] Univ Alcala, Madrid, Spain; [Ayeni, Foluso; Mbarika, Victor; Damasevicius, Robertas] Southern Univ, Baton Rouge, LA USA; Kaunas Univ Technol, Kaunas, Lithuania en_US
gdc.description.endpage 155 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 143 en_US
gdc.description.volume 14 en_US
gdc.description.woscitationindex Social Science Citation Index
gdc.description.wosquality Q4
gdc.identifier.wos WOS:000472684600014
gdc.scopus.citedcount 16
gdc.wos.citedcount 11
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections