Toxicity Detection Using State of the Art Natural Language Methodologies
dc.authorscopusid | 58512511900 | |
dc.authorscopusid | 58512030600 | |
dc.authorscopusid | 40661216400 | |
dc.contributor.author | Keskin, Enes Faruk | |
dc.contributor.author | Acikgoz, Erkut | |
dc.contributor.author | Dogan, Gulustan | |
dc.date.accessioned | 2024-07-05T15:26:35Z | |
dc.date.available | 2024-07-05T15:26:35Z | |
dc.date.issued | 2023 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Keskin, Enes Faruk] Turkish Aeronaut Assoc Univ, Dept Comp Engn, Ankara, Turkiye; [Acikgoz, Erkut] Atilim Univ, Dept Ind Engn, Ankara, Turkiye; [Dogan, Gulustan] Univ North Carolina Wilmington, Dept Comp Sci, Wilmington, NC USA | en_US |
dc.description.abstract | In this paper, the studies carried out to detect objectionable expressions in any text will be explained. Experiments were performed with Sentence transformers, supervised machine learning algorithms, and Bert transformer architecture trained in English, and the results were observed. To prepare the dataset used in the experiments, the natural language processing and machine learning methodologies of the toxic and non-toxic contents in the labeled text data obtained from the Kaggle platform are explained, and then the methods and performances of the models trained using this dataset are summarized in this paper. | en_US |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.1109/ICCRE57112.2023.10155587 | |
dc.identifier.endpage | 20 | en_US |
dc.identifier.isbn | 9798350345650 | |
dc.identifier.issn | 2835-3714 | |
dc.identifier.scopus | 2-s2.0-85166183027 | |
dc.identifier.startpage | 16 | en_US |
dc.identifier.uri | https://doi.org/10.1109/ICCRE57112.2023.10155587 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2552 | |
dc.identifier.wos | WOS:001021496300004 | |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 8th International Conference on Control and Robotics Engineering (ICCRE) -- APR 21-23, 2023 -- Nagaoka Univ Technol, Niigata, JAPAN | en_US |
dc.relation.ispartofseries | International Conference on Control and Robotics Engineering | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | language models | en_US |
dc.subject | bert | en_US |
dc.subject | transformers | en_US |
dc.subject | natural language processing | en_US |
dc.subject | supervised machine learning algorithms | en_US |
dc.subject | deep learning | en_US |
dc.title | Toxicity Detection Using State of the Art Natural Language Methodologies | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication |