Toxicity Detection Using State of the Art Natural Language Methodologies

dc.authorscopusid58512511900
dc.authorscopusid58512030600
dc.authorscopusid40661216400
dc.contributor.authorKeskin, Enes Faruk
dc.contributor.authorAcikgoz, Erkut
dc.contributor.authorDogan, Gulustan
dc.date.accessioned2024-07-05T15:26:35Z
dc.date.available2024-07-05T15:26:35Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Keskin, Enes Faruk] Turkish Aeronaut Assoc Univ, Dept Comp Engn, Ankara, Turkiye; [Acikgoz, Erkut] Atilim Univ, Dept Ind Engn, Ankara, Turkiye; [Dogan, Gulustan] Univ North Carolina Wilmington, Dept Comp Sci, Wilmington, NC USAen_US
dc.description.abstractIn this paper, the studies carried out to detect objectionable expressions in any text will be explained. Experiments were performed with Sentence transformers, supervised machine learning algorithms, and Bert transformer architecture trained in English, and the results were observed. To prepare the dataset used in the experiments, the natural language processing and machine learning methodologies of the toxic and non-toxic contents in the labeled text data obtained from the Kaggle platform are explained, and then the methods and performances of the models trained using this dataset are summarized in this paper.en_US
dc.identifier.citationcount0
dc.identifier.doi10.1109/ICCRE57112.2023.10155587
dc.identifier.endpage20en_US
dc.identifier.isbn9798350345650
dc.identifier.issn2835-3714
dc.identifier.scopus2-s2.0-85166183027
dc.identifier.startpage16en_US
dc.identifier.urihttps://doi.org/10.1109/ICCRE57112.2023.10155587
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2552
dc.identifier.wosWOS:001021496300004
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof8th International Conference on Control and Robotics Engineering (ICCRE) -- APR 21-23, 2023 -- Nagaoka Univ Technol, Niigata, JAPANen_US
dc.relation.ispartofseriesInternational Conference on Control and Robotics Engineering
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount1
dc.subjectlanguage modelsen_US
dc.subjectberten_US
dc.subjecttransformersen_US
dc.subjectnatural language processingen_US
dc.subjectsupervised machine learning algorithmsen_US
dc.subjectdeep learningen_US
dc.titleToxicity Detection Using State of the Art Natural Language Methodologiesen_US
dc.typeConference Objecten_US
dc.wos.citedbyCount0
dspace.entity.typePublication

Files

Collections