Global Robust Stability of Interval Delayed Neural Networks

dc.authorscopusid 7404651584
dc.contributor.author Singh, V.
dc.contributor.author Sıngh, Vımal
dc.contributor.author Sıngh, Vımal
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:11:53Z
dc.date.available 2024-07-05T15:11:53Z
dc.date.issued 2009
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
dc.description.abstract In recent years, the problem of global robust stability of Hopfield-type interval delayed neural networks has received considerable attention. A number of criteria for the global robust stability of such networks have been reported in the literature. On the basis of the idea of dividing (in respect of both the connection weight matrix A and the delayed connection weight matrix B) the given interval into two intervals, four new criteria for the global robust stability of such networks are established. The criteria are in the form of linear matrix inequality and, hence, computationally tractable. The criteria yield a less conservative condition compared with many recently reported criteria, as is demonstrated with an example. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1049/iet-cta.2008.0296
dc.identifier.endpage 749 en_US
dc.identifier.issn 1751-8644
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-65949091361
dc.identifier.scopusquality Q2
dc.identifier.startpage 741 en_US
dc.identifier.uri https://doi.org/10.1049/iet-cta.2008.0296
dc.identifier.uri https://hdl.handle.net/20.500.14411/1510
dc.identifier.volume 3 en_US
dc.identifier.wos WOS:000266275600014
dc.identifier.wosquality Q2
dc.institutionauthor Sıngh, Vımal
dc.language.iso en en_US
dc.publisher inst Engineering Technology-iet en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject [No Keyword Available] en_US
dc.title Global Robust Stability of Interval Delayed Neural Networks en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections