Global Robust Stability of Interval Delayed Neural Networks

dc.authorscopusid7404651584
dc.contributor.authorSingh, V.
dc.contributor.authorSıngh, Vımal
dc.contributor.authorSıngh, Vımal
dc.contributor.otherDepartment of Mechatronics Engineering
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T15:11:53Z
dc.date.available2024-07-05T15:11:53Z
dc.date.issued2009
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkeyen_US
dc.description.abstractIn recent years, the problem of global robust stability of Hopfield-type interval delayed neural networks has received considerable attention. A number of criteria for the global robust stability of such networks have been reported in the literature. On the basis of the idea of dividing (in respect of both the connection weight matrix A and the delayed connection weight matrix B) the given interval into two intervals, four new criteria for the global robust stability of such networks are established. The criteria are in the form of linear matrix inequality and, hence, computationally tractable. The criteria yield a less conservative condition compared with many recently reported criteria, as is demonstrated with an example.en_US
dc.identifier.citationcount2
dc.identifier.doi10.1049/iet-cta.2008.0296
dc.identifier.endpage749en_US
dc.identifier.issn1751-8644
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-65949091361
dc.identifier.scopusqualityQ2
dc.identifier.startpage741en_US
dc.identifier.urihttps://doi.org/10.1049/iet-cta.2008.0296
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1510
dc.identifier.volume3en_US
dc.identifier.wosWOS:000266275600014
dc.identifier.wosqualityQ2
dc.institutionauthorSıngh, Vımal
dc.language.isoenen_US
dc.publisherinst Engineering Technology-ieten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount2
dc.subject[No Keyword Available]en_US
dc.titleGlobal Robust Stability of Interval Delayed Neural Networksen_US
dc.typeArticleen_US
dc.wos.citedbyCount2
dspace.entity.typePublication
relation.isAuthorOfPublicatione3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublicatione3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublicatione3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscoverye3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscoverye2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections