A Rule-Based Approach To Embedding Techniques for Text Document Classification

dc.authoridMishra, Alok/0000-0003-1275-2050
dc.authorscopusid57204948522
dc.authorscopusid7201441575
dc.authorwosidMishra, Alok/AAE-2673-2019
dc.authorwosidaubaid, asmaa/AAY-4014-2021
dc.contributor.authorAubaid, Asmaa M.
dc.contributor.authorMishra, Alok
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:38:09Z
dc.date.available2024-07-05T15:38:09Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Aubaid, Asmaa M.; Mishra, Alok] Atilim Univ, Dept Modeling & Design Engn Syst Modes, Dept Software Engn, TR-06830 Ankara, Turkey; [Aubaid, Asmaa M.] Minist Higher Educ & Sci Res Sci & Technol, Directorate Informat Technol, Baghdad 10070, Iraq; [Mishra, Alok] Molde Univ Coll Specialized Univ Logist, Fac Logist, N-6410 Molde, Norwayen_US
dc.descriptionMishra, Alok/0000-0003-1275-2050;en_US
dc.description.abstractWith the growth of online information and sudden expansion in the number of electronic documents provided on websites and in electronic libraries, there is difficulty in categorizing text documents. Therefore, a rule-based approach is a solution to this problem; the purpose of this study is to classify documents by using a rule-based. This paper deals with the rule-based approach with the embedding technique for a document to vector (doc2vec) files. An experiment was performed on two data sets Reuters-21578 and the 20 Newsgroups to classify the top ten categories of these data sets by using a document to vector rule-based (D2vecRule). Finally, this method provided us a good classification result according to the F-measures and implementation time metrics. In conclusion, it was observed that our algorithm document to vector rule-based (D2vecRule) was good when compared with other algorithms such as JRip, One R, and ZeroR applied to the same Reuters-21578 dataset.en_US
dc.identifier.citationcount15
dc.identifier.doi10.3390/app10114009
dc.identifier.issn2076-3417
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85086934327
dc.identifier.urihttps://doi.org/10.3390/app10114009
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3048
dc.identifier.volume10en_US
dc.identifier.wosWOS:000543385900346
dc.identifier.wosqualityQ2
dc.institutionauthorMıshra, Alok
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount31
dc.subjecttext classificationen_US
dc.subjectrule-baseden_US
dc.subjectword embeddingen_US
dc.subjectDoc2vecen_US
dc.titleA Rule-Based Approach To Embedding Techniques for Text Document Classificationen_US
dc.typeArticleen_US
dc.wos.citedbyCount22
dspace.entity.typePublication
relation.isAuthorOfPublicationde97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscoveryde97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections