On the Injectivity With Respect To <i>q</I> of the Lupas <i>q</I>-transform

dc.authoridTuran, Mehmet/0000-0002-1718-3902
dc.authoridOstrovska, Sofiya/0000-0003-1842-7953
dc.authorscopusid57204587566
dc.authorscopusid35610828900
dc.authorscopusid35782583700
dc.authorwosidTuran, Mehmet/JYQ-4459-2024
dc.authorwosidGurel Yilmaz, Ovgu/JTS-7151-2023
dc.contributor.authorYilmaz, Ovgue Gurel
dc.contributor.authorOstrovska, Sofiya
dc.contributor.authorTuran, Mehmet
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:22:29Z
dc.date.available2024-07-05T15:22:29Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Yilmaz, Ovgue Gurel] Recep Tayyip Erdogan Univ, Dept Math, TR-53100 Rize, Turkiye; [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, TR-06836 Ankara, Turkiyeen_US
dc.descriptionTuran, Mehmet/0000-0002-1718-3902; Ostrovska, Sofiya/0000-0003-1842-7953en_US
dc.description.abstractThe Lupas q-transform has first appeared in the study of the Lupas q-analogue of the Bernstein operator. Given 0 < q < 1 and f is an element of C[0, 1], the Lupas q-transform is defined by Lambda(q)(f; x) Pi(infinity)(k=0) 1/1 + q(k)x Sigma(k=0)f(1 - q(k))q(k(k-1)/2)x(k)/(1 - q)(1 - q(2)) center dot center dot center dot (1 - q(k)), x >= 0. During the last decades, this transform has been investigated from a variety of angles, including its analytical, geometric features, and properties of its block functions along with their sums. As opposed to the available studies dealing with a fixed value of q, the present work is focused on the injectivity of Lambda(q) with respect to parameter q. More precisely, the conditions on f such that equality Lambda(q)(f; x) = Lambda(r)(f; x); x >= 0 implies q = r have been established.en_US
dc.description.sponsorshipRecep Tayyip Erdogan Universityen_US
dc.description.sponsorshipThe authors express their appreciations to the anonymous referee for his/her thorough reading of the manuscript, constructive criticism, and valuable comments. The first-named author gratefully acknowledges the support of Recep Tayyip Erdogan University as this work was completed while she was on post doctoral leave at Atilim University. Also, she expresses her sincere gratitude to professors M. Turan and S. Ostrovska for their invitation to the Department ofMathematics at Atilim University for this leaveen_US
dc.identifier.citationcount0
dc.identifier.doi10.2989/16073606.2023.2229556
dc.identifier.endpage487en_US
dc.identifier.issn1607-3606
dc.identifier.issn1727-933X
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85165129236
dc.identifier.scopusqualityQ2
dc.identifier.startpage477en_US
dc.identifier.urihttps://doi.org/10.2989/16073606.2023.2229556
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2208
dc.identifier.volume47en_US
dc.identifier.wosWOS:001029742600001
dc.identifier.wosqualityQ3
dc.institutionauthorTuran, Mehmet
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount0
dc.subjectLupas q-analogue of the Bernstein operatorsen_US
dc.subjectLupas q-transformen_US
dc.subjectanalytic functionen_US
dc.subjectq-periodicityen_US
dc.titleOn the Injectivity With Respect To <i>q</I> of the Lupas <i>q</I>-transformen_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication
relation.isAuthorOfPublication5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On the injectivity with respect to q TQMA_2024_OGY_SO_MT.pdf
Size:
272.47 KB
Format:
Adobe Portable Document Format

Collections