Predictive Models for Mechanical Properties of Expanded Polystyrene (eps) Geofoam Using Regression Analysis and Artificial Neural Networks

dc.authorid Sadigh, Bahram Lotfi/0000-0002-3027-3734
dc.authorid Akis, Ebru/0000-0001-8417-2405
dc.authorscopusid 8240634500
dc.authorscopusid 57518365200
dc.authorscopusid 57023941000
dc.authorwosid Sadigh, Bahram Lotfi/F-6523-2012
dc.contributor.author Akis, E.
dc.contributor.author Guven, G.
dc.contributor.author Lotfisadigh, B.
dc.contributor.other Manufacturing Engineering
dc.date.accessioned 2024-07-05T15:18:34Z
dc.date.available 2024-07-05T15:18:34Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Akis, E.] Atilim Univ, Dept Civil Engn, TR-06830 Ankara, Turkey; [Guven, G.] Eskisehir Osmangazi Univ, Dept Civil Engn, Eskisehir, Turkey; [Lotfisadigh, B.] Atilim Univ, Dept Mfg Engn, Ankara, Turkey en_US
dc.description Sadigh, Bahram Lotfi/0000-0002-3027-3734; Akis, Ebru/0000-0001-8417-2405 en_US
dc.description.abstract Initial elastic modulus and compressive strength are the two most important engineering properties for modeling and design of EPS geofoams, which are extensively used in civil engineering applications such as light-fill material embankments, retaining structures, and slope stabilization. Estimating these properties based on geometric and physical parameters is of great importance. In this study, the compressive strength and modulus of elasticity values are obtained by performing 356 unconfined compression tests on EPS geofoam samples with different shapes (cubic or disc), dimensions, loading rates, and density values. Using these test results, the mechanical properties of the specimens are predicted by linear regression and artificial neural network (ANN) methods. Both methods predicted the initial modulus of elasticity (E-i), 1% strain (sigma(1)), 5% strain (sigma(5)), and 10% strain (sigma(10)) strength values on a satisfactory level with a coefficient of correlation (R-2) values of greater than 0.901. The only exception was in prediction of sigma(1) and E-i in disc-shaped samples by linear regression method where the R-2 value was around 0.558. The results obtained from linear regression and ANN approaches show that ANN slightly outperform linear regression prediction for E-i and sigma(1) properties. The outcomes of the two methods are also compared with results of relevant studies, and it is observed that the calculated values are consistent with the results from the literature. en_US
dc.identifier.citationcount 6
dc.identifier.doi 10.1007/s00521-022-07014-w
dc.identifier.endpage 10884 en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.issue 13 en_US
dc.identifier.scopus 2-s2.0-85126208668
dc.identifier.startpage 10845 en_US
dc.identifier.uri https://doi.org/10.1007/s00521-022-07014-w
dc.identifier.uri https://hdl.handle.net/20.500.14411/1859
dc.identifier.volume 34 en_US
dc.identifier.wos WOS:000768660000001
dc.identifier.wosquality Q2
dc.institutionauthor Lotfısadıgh, Bahram
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject Expanded polystyrene (EPS) geofoam en_US
dc.subject Geosynthetics en_US
dc.subject Modulus of elasticity en_US
dc.subject Compressive strength en_US
dc.subject Regression analysis en_US
dc.subject Artificial neural network (ANN) en_US
dc.title Predictive Models for Mechanical Properties of Expanded Polystyrene (eps) Geofoam Using Regression Analysis and Artificial Neural Networks en_US
dc.type Article en_US
dc.wos.citedbyCount 10
dspace.entity.type Publication
relation.isAuthorOfPublication a770c153-b9da-4fcc-a49e-f215d0c13920
relation.isAuthorOfPublication.latestForDiscovery a770c153-b9da-4fcc-a49e-f215d0c13920
relation.isOrgUnitOfPublication 9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery 9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections