Predictive Models for Mechanical Properties of Expanded Polystyrene (eps) Geofoam Using Regression Analysis and Artificial Neural Networks

dc.authoridSadigh, Bahram Lotfi/0000-0002-3027-3734
dc.authoridAkis, Ebru/0000-0001-8417-2405
dc.authorscopusid8240634500
dc.authorscopusid57518365200
dc.authorscopusid57023941000
dc.authorwosidSadigh, Bahram Lotfi/F-6523-2012
dc.contributor.authorAkis, E.
dc.contributor.authorLotfısadıgh, Bahram
dc.contributor.authorGuven, G.
dc.contributor.authorLotfisadigh, B.
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T15:18:34Z
dc.date.available2024-07-05T15:18:34Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Akis, E.] Atilim Univ, Dept Civil Engn, TR-06830 Ankara, Turkey; [Guven, G.] Eskisehir Osmangazi Univ, Dept Civil Engn, Eskisehir, Turkey; [Lotfisadigh, B.] Atilim Univ, Dept Mfg Engn, Ankara, Turkeyen_US
dc.descriptionSadigh, Bahram Lotfi/0000-0002-3027-3734; Akis, Ebru/0000-0001-8417-2405en_US
dc.description.abstractInitial elastic modulus and compressive strength are the two most important engineering properties for modeling and design of EPS geofoams, which are extensively used in civil engineering applications such as light-fill material embankments, retaining structures, and slope stabilization. Estimating these properties based on geometric and physical parameters is of great importance. In this study, the compressive strength and modulus of elasticity values are obtained by performing 356 unconfined compression tests on EPS geofoam samples with different shapes (cubic or disc), dimensions, loading rates, and density values. Using these test results, the mechanical properties of the specimens are predicted by linear regression and artificial neural network (ANN) methods. Both methods predicted the initial modulus of elasticity (E-i), 1% strain (sigma(1)), 5% strain (sigma(5)), and 10% strain (sigma(10)) strength values on a satisfactory level with a coefficient of correlation (R-2) values of greater than 0.901. The only exception was in prediction of sigma(1) and E-i in disc-shaped samples by linear regression method where the R-2 value was around 0.558. The results obtained from linear regression and ANN approaches show that ANN slightly outperform linear regression prediction for E-i and sigma(1) properties. The outcomes of the two methods are also compared with results of relevant studies, and it is observed that the calculated values are consistent with the results from the literature.en_US
dc.identifier.citation6
dc.identifier.doi10.1007/s00521-022-07014-w
dc.identifier.endpage10884en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue13en_US
dc.identifier.scopus2-s2.0-85126208668
dc.identifier.startpage10845en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-022-07014-w
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1859
dc.identifier.volume34en_US
dc.identifier.wosWOS:000768660000001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExpanded polystyrene (EPS) geofoamen_US
dc.subjectGeosyntheticsen_US
dc.subjectModulus of elasticityen_US
dc.subjectCompressive strengthen_US
dc.subjectRegression analysisen_US
dc.subjectArtificial neural network (ANN)en_US
dc.titlePredictive Models for Mechanical Properties of Expanded Polystyrene (eps) Geofoam Using Regression Analysis and Artificial Neural Networksen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationa770c153-b9da-4fcc-a49e-f215d0c13920
relation.isAuthorOfPublication.latestForDiscoverya770c153-b9da-4fcc-a49e-f215d0c13920
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections