Cauchy Tipi Başlangıç Değer Problemlerinin Banach Uzaylarında Çözümü

Loading...
Thumbnail Image

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Events

Abstract

Beş bölümden oluşan bu tezde ilk bölüm giriş için ayrıldı. İkinci bölüm sırasıyla klasik anlamda ve Sobolev anlamında kompleks kısmi türevlere, genelleştirilmiş analitik fonksiyonlara ve iç kestirimlere ayrıldı. Ayrıca holomorf fonksiyonlar için bir iç kestirim supremum normunda elde edildi. Üçüncü bölümde önce Banach uzayları skalaları tanıtıldı. Sonra Cauchy tipinde baş-langıç değer problemlerinin çözümlerinin varlık ve tekliği için soyut Cauchy-Kova-levskaya teoremi eş uzaylar metodu yardımıyla kanıtlandı. Dördüncü bölümde Son ve Tutschke ST1 tarafından Cauchy-Riemann sistemini sağ-layan bilinmeyen iki tane reel-değerli fonksiyon için tanımlanan, birinci basamaktan iki lineer kısmi türevli denklemin oluşturduğu sisteme ilişkin başlangıç değer problemleri ele alındı. Bu problemler önce kompleks formda yazıldı. Daha sonra karşılık gelen problemin çözümü soyut Cauchy-Kovalevskaya teoremi yardımıyla holomorf fonksiyonlar uzayında elde edildi. Son bölümde N.Q. Hung H tarafından quaterniyon analizinde genelleştirilmiş regüler fonksiyonlar için tanımlanan birinci basamaktan bir evrim denklemine ilişkin başlangıç değer problemi incelendi. Hung bu probleme ilişkin diferansiyel operatörlerün eş olabilmesi için sadece yeter olan koşulları kanıtladı. Biz söz konusu operatörlerin eş olması için sadece yeter olan değil aynı zamanda gerek olan koşulları da kanıtladık AY. Bundan başka söz konusu makalede iç kestirim hesaplanırken yapılan hatayı da düzelttik.
This thesis consists of five chapters. The first chapter is devoted to the historical background and introductory concepts. Partial complex differentiations in the classical sense and in the sense of Sobolev, generalized analytic functions, associated differential operators, associated spaces and interior estimates are introduced in Chapter II. The interior estimate for holomorphic functions in the supremum-norm is also obtained. In Chapter III, first, the concept of scales of Banach spaces are presented. Then the proof of the abstract Cauchy-Kovalevskaya theorem for the existence and uniqueness of the solution of initial-value problems of Cauchy type by the method of associated spaces is presented. In Chapter IV, initial value problems defined by Son and Tutschke ST1, in the space of functions satisfying the Cauchy-Riemann system, for a system of linear first order partial differential equations for two unknown real-valued functions in the plane is considered. After rewriting the initial value problem in complex form, the solution of the corresponding problem is obtained by applying the abstract Cauchy-Kovalevskaya theorem in the space of holomorphic functions. In the last chapter, an initial value problem for a first order evolution equation defined by N. Q. Hung H in the space of generalized regular functions in Quaternionic Analysis is discussed. Hung has proven only sufficient conditions for the related differential operators to be associated. We have proven not only sufficient but also necessary conditions for the underlined differential operators to be associated AY. Further we correct a mistake made in the calculation of the interior estimate in that paper.

Description

Keywords

Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

70