On a Symmetric Generalization of Bivariate Sturm-Liouville Problems

dc.authorid Area, Ivan/0000-0003-0872-5017
dc.authorid Güldoğan Lekesiz, Esra/0000-0001-7653-8745
dc.authorid Aktas, Rabia/0000-0002-7811-8610
dc.authorscopusid 57194410672
dc.authorscopusid 25823678500
dc.authorscopusid 6603960177
dc.authorscopusid 57221458453
dc.authorwosid Area, Ivan/E-9007-2016
dc.authorwosid Güldoğan Lekesiz, Esra/AAJ-5215-2021
dc.authorwosid Aktas, Rabia/C-1228-2018
dc.contributor.author Tefo, Yves Guemo
dc.contributor.author Aktas, Rabia
dc.contributor.author Area, Ivan
dc.contributor.author Lekesiz, Esra Guldogan
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:19:35Z
dc.date.available 2024-07-05T15:19:35Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Tefo, Yves Guemo; Area, Ivan] Univ Vigo, Dept Matemat Aplicada 2, EE Aeronaut & Espazo, Campus As Lagoas Ourense, Orense 32004, Spain; [Tefo, Yves Guemo] Univ Yaounde I, Fac Sci, Dept Math, Yaounde, Cameroon; [Aktas, Rabia] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey; [Lekesiz, Esra Guldogan] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description Area, Ivan/0000-0003-0872-5017; Güldoğan Lekesiz, Esra/0000-0001-7653-8745; Aktas, Rabia/0000-0002-7811-8610 en_US
dc.description.abstract A new class of partial differential equations having symmetric orthogonal solutions is presented. The general equation is presented and orthogonality is obtained using the Sturm-Liouville approach. Conditions on the polynomial coefficients to have admissible partial differential equations are given. The general case is analyzed in detail, providing orthogonality weight function, three-term recurrence relations for the monic orthogonal polynomial solutions, as well as explicit form of these monic orthogonal polynomial solutions, which are solutions of an admissible and potentially self-adjoint linear second-order partial differential equation of hypergeometric type. en_US
dc.description.sponsorship TUBITAK Research Grant [120F140]; Agencia Estatal de Investigacion (AEI) of Spain [MTM2016-75140-P]; European Community fund FEDER; Universidade de Vigo/CISUG en_US
dc.description.sponsorship The authors thank the referees for their valuable comments which improved a preliminary version of this work. The work of R.A. has been partially supported by TUBITAK Research Grant Proj. No. 120F140. The work of I.A. has been partially supported by the Agencia Estatal de Investigacion (AEI) of Spain under Grant MTM2016-75140-P, cofinanced by the European Community fund FEDER. Funding for open access charge: Universidade de Vigo/CISUG. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/s41980-021-00605-8
dc.identifier.endpage 1665 en_US
dc.identifier.issn 1017-060X
dc.identifier.issn 1735-8515
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85109830372
dc.identifier.startpage 1649 en_US
dc.identifier.uri https://doi.org/10.1007/s41980-021-00605-8
dc.identifier.uri https://hdl.handle.net/20.500.14411/1991
dc.identifier.volume 48 en_US
dc.identifier.wos WOS:000672325700001
dc.identifier.wosquality Q3
dc.institutionauthor Lekesiz, Esra Güldoğan
dc.language.iso en en_US
dc.publisher Springer Singapore Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Bivariate orthogonal polynomials en_US
dc.subject Symmetric orthogonal polynomials en_US
dc.subject Partial differential equations en_US
dc.title On a Symmetric Generalization of Bivariate Sturm-Liouville Problems en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 9d2c18c3-9314-41de-843d-4e1bdb1b4f38
relation.isAuthorOfPublication.latestForDiscovery 9d2c18c3-9314-41de-843d-4e1bdb1b4f38
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections