On a Symmetric Generalization of Bivariate Sturm-Liouville Problems

dc.authoridArea, Ivan/0000-0003-0872-5017
dc.authoridGüldoğan Lekesiz, Esra/0000-0001-7653-8745
dc.authoridAktas, Rabia/0000-0002-7811-8610
dc.authorscopusid57194410672
dc.authorscopusid25823678500
dc.authorscopusid6603960177
dc.authorscopusid57221458453
dc.authorwosidArea, Ivan/E-9007-2016
dc.authorwosidGüldoğan Lekesiz, Esra/AAJ-5215-2021
dc.authorwosidAktas, Rabia/C-1228-2018
dc.contributor.authorLekesiz, Esra Güldoğan
dc.contributor.authorAktas, Rabia
dc.contributor.authorArea, Ivan
dc.contributor.authorLekesiz, Esra Guldogan
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:19:35Z
dc.date.available2024-07-05T15:19:35Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Tefo, Yves Guemo; Area, Ivan] Univ Vigo, Dept Matemat Aplicada 2, EE Aeronaut & Espazo, Campus As Lagoas Ourense, Orense 32004, Spain; [Tefo, Yves Guemo] Univ Yaounde I, Fac Sci, Dept Math, Yaounde, Cameroon; [Aktas, Rabia] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey; [Lekesiz, Esra Guldogan] Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.descriptionArea, Ivan/0000-0003-0872-5017; Güldoğan Lekesiz, Esra/0000-0001-7653-8745; Aktas, Rabia/0000-0002-7811-8610en_US
dc.description.abstractA new class of partial differential equations having symmetric orthogonal solutions is presented. The general equation is presented and orthogonality is obtained using the Sturm-Liouville approach. Conditions on the polynomial coefficients to have admissible partial differential equations are given. The general case is analyzed in detail, providing orthogonality weight function, three-term recurrence relations for the monic orthogonal polynomial solutions, as well as explicit form of these monic orthogonal polynomial solutions, which are solutions of an admissible and potentially self-adjoint linear second-order partial differential equation of hypergeometric type.en_US
dc.description.sponsorshipTUBITAK Research Grant [120F140]; Agencia Estatal de Investigacion (AEI) of Spain [MTM2016-75140-P]; European Community fund FEDER; Universidade de Vigo/CISUGen_US
dc.description.sponsorshipThe authors thank the referees for their valuable comments which improved a preliminary version of this work. The work of R.A. has been partially supported by TUBITAK Research Grant Proj. No. 120F140. The work of I.A. has been partially supported by the Agencia Estatal de Investigacion (AEI) of Spain under Grant MTM2016-75140-P, cofinanced by the European Community fund FEDER. Funding for open access charge: Universidade de Vigo/CISUG.en_US
dc.identifier.citation1
dc.identifier.doi10.1007/s41980-021-00605-8
dc.identifier.endpage1665en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85109830372
dc.identifier.startpage1649en_US
dc.identifier.urihttps://doi.org/10.1007/s41980-021-00605-8
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1991
dc.identifier.volume48en_US
dc.identifier.wosWOS:000672325700001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringer Singapore Pte Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBivariate orthogonal polynomialsen_US
dc.subjectSymmetric orthogonal polynomialsen_US
dc.subjectPartial differential equationsen_US
dc.titleOn a Symmetric Generalization of Bivariate Sturm-Liouville Problemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication9d2c18c3-9314-41de-843d-4e1bdb1b4f38
relation.isAuthorOfPublication.latestForDiscovery9d2c18c3-9314-41de-843d-4e1bdb1b4f38
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections