Digital Transformation Strategies, Practices, and Trends: a Large-Scale Retrospective Study Based on Machine Learning

dc.authorid GURCAN, Fatih/0000-0001-9915-6686
dc.authorid boztaş, gizem/0000-0002-4593-032X
dc.authorid Menekse Dalveren, Gonca Gokce/0000-0002-8649-1909
dc.authorid Derawi, Mohammad/0000-0003-0448-7613
dc.authorscopusid 57194776706
dc.authorscopusid 58248606700
dc.authorscopusid 57201658878
dc.authorscopusid 35408917600
dc.authorwosid GURCAN, Fatih/AAJ-7503-2021
dc.authorwosid boztaş, gizem/AAL-3757-2021
dc.authorwosid Menekse Dalveren, Gonca Gokce/HHS-4591-2022
dc.contributor.author Gurcan, Fatih
dc.contributor.author Boztas, Gizem Dilan
dc.contributor.author Dalveren, Gonca Gokce Menekse
dc.contributor.author Derawi, Mohammad
dc.contributor.other Information Systems Engineering
dc.date.accessioned 2024-07-05T15:25:13Z
dc.date.available 2024-07-05T15:25:13Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Gurcan, Fatih] Karadeniz Tech Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-61080 Trabzon, Turkiye; [Boztas, Gizem Dilan] Karadeniz Tech Univ, Digital Transformat Off, TR-61080 Trabzon, Turkiye; [Dalveren, Gonca Gokce Menekse] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkiye; [Derawi, Mohammad] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, N-7034 Gjovik, Norway en_US
dc.description GURCAN, Fatih/0000-0001-9915-6686; boztaş, gizem/0000-0002-4593-032X; Menekse Dalveren, Gonca Gokce/0000-0002-8649-1909; Derawi, Mohammad/0000-0003-0448-7613 en_US
dc.description.abstract The purpose of this research is to identify the areas of interest, research topics, and application areas that reflect the research nature of digital transformation (DT), as well as the strategies, practices, and trends of DT. To accomplish this, the Latent Dirichlet allocation algorithm, a probabilistic topic modeling technique, was applied to 5350 peer-reviewed journal articles on DT published in the last ten years, from 2013 to 2022. The analysis resulted in the discovery of 34 topics. These topics were classified, and a systematic taxonomy for DT was presented, including four sub-categories: implementation, technology, process, and human. As a result of time-based trend analysis, "Sustainable Energy", "DT in Health", "E-Government", "DT in Education", and "Supply Chain" emerged as top topics with an increasing trend. Our findings indicate that research interests are focused on specific applications of digital transformation in industrial and public settings. Based on our findings, we anticipate that the next phase of DT research and practice will concentrate on specific DT applications in government, health, education, and economics. "Sustainable Energy" and "Supply Chain" have been identified as the most prominent topics in current DT processes and applications. This study can help researchers and practitioners in the field by providing insights and implications about the evolution and applications of DT. Our findings are intended to serve as a guide for DT in understanding current research gaps and potential future research topics. en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.3390/su15097496
dc.identifier.issn 2071-1050
dc.identifier.issue 9 en_US
dc.identifier.scopus 2-s2.0-85159265155
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/su15097496
dc.identifier.uri https://hdl.handle.net/20.500.14411/2521
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000987794900001
dc.identifier.wosquality Q2
dc.institutionauthor Dalveren, Gonca Gökçe Menekşe
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 29
dc.subject digital transformation en_US
dc.subject trends and practices en_US
dc.subject topic modeling en_US
dc.subject retrospective analysis en_US
dc.title Digital Transformation Strategies, Practices, and Trends: a Large-Scale Retrospective Study Based on Machine Learning en_US
dc.type Article en_US
dc.wos.citedbyCount 16
dspace.entity.type Publication
relation.isAuthorOfPublication ffacc1c8-d6c0-4dd8-bad7-6a42bbb89dcf
relation.isAuthorOfPublication.latestForDiscovery ffacc1c8-d6c0-4dd8-bad7-6a42bbb89dcf
relation.isOrgUnitOfPublication cf0fb36c-0500-438e-b4cc-ad1d4ef25579
relation.isOrgUnitOfPublication.latestForDiscovery cf0fb36c-0500-438e-b4cc-ad1d4ef25579

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Digital Transformation Strategies, Practices, and Trendssustainability-15-07496.pdf
Size:
630.56 KB
Format:
Adobe Portable Document Format

Collections