Fusion of Smartphone Sensor Data for Classification of Daily User Activities

dc.contributor.author Sengul, Gokhan
dc.contributor.author Ozcelik, Erol
dc.contributor.author Misra, Sanjay
dc.contributor.author Damasevicius, Robertas
dc.contributor.author Maskeliunas, Rytis
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:19:52Z
dc.date.available 2024-07-05T15:19:52Z
dc.date.issued 2021
dc.description Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084; Maskeliunas, Rytis/0000-0002-2809-2213; Şengül, Gökhan/0000-0003-2273-4411 en_US
dc.description.abstract New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN. en_US
dc.identifier.doi 10.1007/s11042-021-11105-6
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85113190488
dc.identifier.uri https://doi.org/10.1007/s11042-021-11105-6
dc.identifier.uri https://hdl.handle.net/20.500.14411/2028
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Multimedia Tools and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Human activity recognition en_US
dc.subject Wearable intelligence en_US
dc.subject Feature fusion en_US
dc.title Fusion of Smartphone Sensor Data for Classification of Daily User Activities en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.id Damaševičius, Robertas/0000-0001-9990-1084
gdc.author.id Maskeliunas, Rytis/0000-0002-2809-2213
gdc.author.id Şengül, Gökhan/0000-0003-2273-4411
gdc.author.institutional Şengül, Gökhan
gdc.author.institutional Özçelik, Erol
gdc.author.institutional Mısra, Sanjay
gdc.author.scopusid 8402817900
gdc.author.scopusid 26424777100
gdc.author.scopusid 56962766700
gdc.author.scopusid 6603451290
gdc.author.scopusid 27467587600
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.author.wosid Damaševičius, Robertas/E-1387-2017
gdc.author.wosid Sengul, Gokhan/G-8213-2016
gdc.author.wosid Maskeliunas, Rytis/J-7173-2017
gdc.author.wosid Şengül, Gökhan/AAA-2788-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Sengul, Gokhan; Misra, Sanjay] Atilim Univ, Dept Comp Engn, AnkaraKizilcasar Mah, Incek, Turkey; [Ozcelik, Erol] Cankaya Univ, Yukariyurtcu Mahallesi,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 0123, Nigeria; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Vileikos 8, Kaunas, Lithuania en_US
gdc.description.endpage 33546 en_US
gdc.description.issue 24 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 33527 en_US
gdc.description.volume 80 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3193874194
gdc.identifier.wos WOS:000686840500002
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 18.0
gdc.oaire.influence 3.6165209E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.919793E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 2.887
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 17
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 24
gdc.scopus.citedcount 24
gdc.wos.citedcount 18
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication acfd2e4e-2792-4323-91eb-806134586df2
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections