Fusion of smartphone sensor data for classification of daily user activities

dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridDamaševičius, Robertas/0000-0001-9990-1084
dc.authoridMaskeliunas, Rytis/0000-0002-2809-2213
dc.authoridŞengül, Gökhan/0000-0003-2273-4411
dc.authorscopusid8402817900
dc.authorscopusid26424777100
dc.authorscopusid56962766700
dc.authorscopusid6603451290
dc.authorscopusid27467587600
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidDamaševičius, Robertas/E-1387-2017
dc.authorwosidSengul, Gokhan/G-8213-2016
dc.authorwosidMaskeliunas, Rytis/J-7173-2017
dc.authorwosidŞengül, Gökhan/AAA-2788-2022
dc.contributor.authorSengul, Gokhan
dc.contributor.authorOzcelik, Erol
dc.contributor.authorMisra, Sanjay
dc.contributor.authorDamasevicius, Robertas
dc.contributor.authorMaskeliunas, Rytis
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:19:52Z
dc.date.available2024-07-05T15:19:52Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Sengul, Gokhan; Misra, Sanjay] Atilim Univ, Dept Comp Engn, AnkaraKizilcasar Mah, Incek, Turkey; [Ozcelik, Erol] Cankaya Univ, Yukariyurtcu Mahallesi,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 0123, Nigeria; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Vileikos 8, Kaunas, Lithuaniaen_US
dc.descriptionMisra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084; Maskeliunas, Rytis/0000-0002-2809-2213; Şengül, Gökhan/0000-0003-2273-4411en_US
dc.description.abstractNew mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN.en_US
dc.identifier.citation15
dc.identifier.doi10.1007/s11042-021-11105-6
dc.identifier.endpage33546en_US
dc.identifier.issn1380-7501
dc.identifier.issn1573-7721
dc.identifier.issue24en_US
dc.identifier.scopus2-s2.0-85113190488
dc.identifier.scopusqualityQ2
dc.identifier.startpage33527en_US
dc.identifier.urihttps://doi.org/10.1007/s11042-021-11105-6
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2028
dc.identifier.volume80en_US
dc.identifier.wosWOS:000686840500002
dc.identifier.wosqualityQ2
dc.institutionauthorŞengül, Gökhan
dc.institutionauthorÖzçelik, Erol
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHuman activity recognitionen_US
dc.subjectWearable intelligenceen_US
dc.subjectFeature fusionen_US
dc.titleFusion of smartphone sensor data for classification of daily user activitiesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublicationacfd2e4e-2792-4323-91eb-806134586df2
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscoveryf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections