Fusion of smartphone sensor data for classification of daily user activities
dc.authorid | Misra, Sanjay/0000-0002-3556-9331 | |
dc.authorid | Damaševičius, Robertas/0000-0001-9990-1084 | |
dc.authorid | Maskeliunas, Rytis/0000-0002-2809-2213 | |
dc.authorid | Şengül, Gökhan/0000-0003-2273-4411 | |
dc.authorscopusid | 8402817900 | |
dc.authorscopusid | 26424777100 | |
dc.authorscopusid | 56962766700 | |
dc.authorscopusid | 6603451290 | |
dc.authorscopusid | 27467587600 | |
dc.authorwosid | Misra, Sanjay/K-2203-2014 | |
dc.authorwosid | Damaševičius, Robertas/E-1387-2017 | |
dc.authorwosid | Sengul, Gokhan/G-8213-2016 | |
dc.authorwosid | Maskeliunas, Rytis/J-7173-2017 | |
dc.authorwosid | Şengül, Gökhan/AAA-2788-2022 | |
dc.contributor.author | Sengul, Gokhan | |
dc.contributor.author | Ozcelik, Erol | |
dc.contributor.author | Misra, Sanjay | |
dc.contributor.author | Damasevicius, Robertas | |
dc.contributor.author | Maskeliunas, Rytis | |
dc.contributor.other | Computer Engineering | |
dc.date.accessioned | 2024-07-05T15:19:52Z | |
dc.date.available | 2024-07-05T15:19:52Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Sengul, Gokhan; Misra, Sanjay] Atilim Univ, Dept Comp Engn, AnkaraKizilcasar Mah, Incek, Turkey; [Ozcelik, Erol] Cankaya Univ, Yukariyurtcu Mahallesi,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 0123, Nigeria; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Vileikos 8, Kaunas, Lithuania | en_US |
dc.description | Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084; Maskeliunas, Rytis/0000-0002-2809-2213; Şengül, Gökhan/0000-0003-2273-4411 | en_US |
dc.description.abstract | New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN. | en_US |
dc.identifier.citation | 15 | |
dc.identifier.doi | 10.1007/s11042-021-11105-6 | |
dc.identifier.endpage | 33546 | en_US |
dc.identifier.issn | 1380-7501 | |
dc.identifier.issn | 1573-7721 | |
dc.identifier.issue | 24 | en_US |
dc.identifier.scopus | 2-s2.0-85113190488 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 33527 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11042-021-11105-6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2028 | |
dc.identifier.volume | 80 | en_US |
dc.identifier.wos | WOS:000686840500002 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Şengül, Gökhan | |
dc.institutionauthor | Özçelik, Erol | |
dc.institutionauthor | Mısra, Sanjay | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Human activity recognition | en_US |
dc.subject | Wearable intelligence | en_US |
dc.subject | Feature fusion | en_US |
dc.title | Fusion of smartphone sensor data for classification of daily user activities | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
relation.isAuthorOfPublication | acfd2e4e-2792-4323-91eb-806134586df2 | |
relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isAuthorOfPublication.latestForDiscovery | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |