Fusion of Smartphone Sensor Data for Classification of Daily User Activities
| dc.contributor.author | Sengul, Gokhan | |
| dc.contributor.author | Ozcelik, Erol | |
| dc.contributor.author | Misra, Sanjay | |
| dc.contributor.author | Damasevicius, Robertas | |
| dc.contributor.author | Maskeliunas, Rytis | |
| dc.contributor.other | Computer Engineering | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:19:52Z | |
| dc.date.available | 2024-07-05T15:19:52Z | |
| dc.date.issued | 2021 | |
| dc.description | Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084; Maskeliunas, Rytis/0000-0002-2809-2213; Şengül, Gökhan/0000-0003-2273-4411 | en_US | 
| dc.description.abstract | New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN. | en_US | 
| dc.identifier.doi | 10.1007/s11042-021-11105-6 | |
| dc.identifier.issn | 1380-7501 | |
| dc.identifier.issn | 1573-7721 | |
| dc.identifier.scopus | 2-s2.0-85113190488 | |
| dc.identifier.uri | https://doi.org/10.1007/s11042-021-11105-6 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2028 | |
| dc.language.iso | en | en_US | 
| dc.publisher | Springer | en_US | 
| dc.relation.ispartof | Multimedia Tools and Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US | 
| dc.subject | Human activity recognition | en_US | 
| dc.subject | Wearable intelligence | en_US | 
| dc.subject | Feature fusion | en_US | 
| dc.title | Fusion of Smartphone Sensor Data for Classification of Daily User Activities | en_US | 
| dc.type | Article | en_US | 
| dspace.entity.type | Publication | |
| gdc.author.id | Misra, Sanjay/0000-0002-3556-9331 | |
| gdc.author.id | Damaševičius, Robertas/0000-0001-9990-1084 | |
| gdc.author.id | Maskeliunas, Rytis/0000-0002-2809-2213 | |
| gdc.author.id | Şengül, Gökhan/0000-0003-2273-4411 | |
| gdc.author.institutional | Şengül, Gökhan | |
| gdc.author.institutional | Özçelik, Erol | |
| gdc.author.institutional | Mısra, Sanjay | |
| gdc.author.scopusid | 8402817900 | |
| gdc.author.scopusid | 26424777100 | |
| gdc.author.scopusid | 56962766700 | |
| gdc.author.scopusid | 6603451290 | |
| gdc.author.scopusid | 27467587600 | |
| gdc.author.wosid | Misra, Sanjay/K-2203-2014 | |
| gdc.author.wosid | Damaševičius, Robertas/E-1387-2017 | |
| gdc.author.wosid | Sengul, Gokhan/G-8213-2016 | |
| gdc.author.wosid | Maskeliunas, Rytis/J-7173-2017 | |
| gdc.author.wosid | Şengül, Gökhan/AAA-2788-2022 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US | 
| gdc.description.departmenttemp | [Sengul, Gokhan; Misra, Sanjay] Atilim Univ, Dept Comp Engn, AnkaraKizilcasar Mah, Incek, Turkey; [Ozcelik, Erol] Cankaya Univ, Yukariyurtcu Mahallesi,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 0123, Nigeria; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Vileikos 8, Kaunas, Lithuania | en_US | 
| gdc.description.endpage | 33546 | en_US | 
| gdc.description.issue | 24 | en_US | 
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US | 
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 33527 | en_US | 
| gdc.description.volume | 80 | en_US | 
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3193874194 | |
| gdc.identifier.wos | WOS:000686840500002 | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 18.0 | |
| gdc.oaire.influence | 3.6165209E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.919793E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 2.887 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 17 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 25 | |
| gdc.plumx.scopuscites | 24 | |
| gdc.scopus.citedcount | 24 | |
| gdc.wos.citedcount | 18 | |
| relation.isAuthorOfPublication | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
| relation.isAuthorOfPublication | acfd2e4e-2792-4323-91eb-806134586df2 | |
| relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
| relation.isAuthorOfPublication.latestForDiscovery | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
| relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |