High Persistence and Nonlinear Behavior in Financial Variables: A More Powerful Unit Root Testing in the ESTAR Framework

dc.authoridCorakci, Aysegul/0000-0002-0684-4103
dc.authorscopusid23978235900
dc.authorscopusid56941641000
dc.authorscopusid57300824900
dc.authorwosidCorakci, Aysegul/ABE-3469-2021
dc.contributor.authorOmay, Tolga
dc.contributor.authorCorakci, Aysegul
dc.contributor.authorHasdemir, Esra
dc.contributor.otherEconomics
dc.contributor.otherInternational Trade and Logistics
dc.date.accessioned2024-07-05T15:16:52Z
dc.date.available2024-07-05T15:16:52Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Omay, Tolga] Atilim Univ, Dept Econ, TR-06830 Ankara, Turkey; [Corakci, Aysegul] Cankaya Univ, Dept Econ, TR-06790 Ankara, Turkey; [Hasdemir, Esra] Univ Turkish Aeronaut Assoc, Dept Logist Management, TR-06790 Ankara, Turkeyen_US
dc.descriptionCorakci, Aysegul/0000-0002-0684-4103en_US
dc.description.abstractIn this study, we consider the hybrid nonlinear features of the Exponential Smooth Transition Autoregressive-Fractional Fourier Function (ESTAR-FFF) form unit root test. As is well known, when developing a unit root test for the ESTAR model, linearization is performed by the Taylor approximation, and thereby the nuisance parameter problem is eliminated. Although this linearization process leads to a certain amount of information loss in the unit root testing equation, it also causes the resulting test to be more accessible and consistent. The method that we propose here contributes to the literature in three important ways. First, it reduces the information loss that arises due to the Taylor expansion. Second, the research to date has tended to misinterpret the Fourier function used with the Kapetanios, Shin and Snell (2003) (KSS) unit root test and considers it to capture multiple smooth transition structural breaks. The simulation studies that we carry out in this study clearly show that the Fourier function only restores the Taylor residuals of the ESTAR type function rather than accounting forthe smooth structural break. Third, the new nonlinear unit root test developed in this paper has very strong power in the highly persistent near unit root environment that the financial data exhibit. The application of the Kapetanios Shin Snell- Fractional Fourier (KSS-FF) test to ex-post real interest rates data of 11 OECD countries for country-specific sample periods shows that the new test catches nonlinear stationarity in many more countries than the KSS test itself.en_US
dc.identifier.citation2
dc.identifier.doi10.3390/math9202534
dc.identifier.issn2227-7390
dc.identifier.issue20en_US
dc.identifier.scopus2-s2.0-85117401841
dc.identifier.urihttps://doi.org/10.3390/math9202534
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1685
dc.identifier.volume9en_US
dc.identifier.wosWOS:000713302000001
dc.identifier.wosqualityQ1
dc.institutionauthorOmay, Tolga
dc.institutionauthorHasdemir, Esra
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectESTARen_US
dc.subjectunit rooten_US
dc.subjectfractional frequency fourier functionen_US
dc.subjectnear unit rooten_US
dc.subjecthigh persistencyen_US
dc.subjectnonlinear financial variablesen_US
dc.titleHigh Persistence and Nonlinear Behavior in Financial Variables: A More Powerful Unit Root Testing in the ESTAR Frameworken_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc49f4d4e-0fdb-400e-ba3c-62ec300b5c96
relation.isAuthorOfPublication3d84c3c6-38af-41d3-a771-1bea6b914779
relation.isAuthorOfPublication.latestForDiscoveryc49f4d4e-0fdb-400e-ba3c-62ec300b5c96
relation.isOrgUnitOfPublicationf17c3770-9c6e-4de2-90e7-73c30275c2f9
relation.isOrgUnitOfPublication91df35e9-cb7b-4457-9edb-26bfbb5d8207
relation.isOrgUnitOfPublication.latestForDiscoveryf17c3770-9c6e-4de2-90e7-73c30275c2f9

Files

Collections