ON THE RATE OF CONVERGENCE FOR THE <i>q</i>-DURRMEYER POLYNOMIALS IN COMPLEX DOMAINS
dc.authorscopusid | 59380840600 | |
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 35782583700 | |
dc.authorwosid | Turan, Mehmet/JYQ-4459-2024 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Gurel, Ovgu | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Turan, Mehmet | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-11-05T20:18:46Z | |
dc.date.available | 2024-11-05T20:18:46Z | |
dc.date.issued | 2024 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Gurel, Ovgu] Recep Tayyip Erdogan Univ, Dept Math, Rize, Turkiye; [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, Incek, Turkiye | en_US |
dc.description.abstract | The q-Durrmeyer polynomials are one of the popular q-versions of the classical operators of approximation theory. They have been studied from different points of view by a number of researchers. The aim of this work is to estimate the rate of convergence for the sequence of the q-Durrmeyer polynomials in the case 0 < q < 1. It is proved that for any compact set D subset of C, the rate of convergence is O(q(n)) as n -> infinity. The sharpness of the obtained result is demonstrated. | en_US |
dc.description.sponsorship | The authors express their sincere gratitude to the anonymous referees for their thorough reading of the manuscript and beneficial comments. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1515/ms-2024-0092 | |
dc.identifier.endpage | 1276 | en_US |
dc.identifier.issn | 0139-9918 | |
dc.identifier.issn | 1337-2211 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85207277022 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1267 | en_US |
dc.identifier.uri | https://doi.org/10.1515/ms-2024-0092 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/10243 | |
dc.identifier.volume | 74 | en_US |
dc.identifier.wos | WOS:001334471700014 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.institutionauthor | Turan, Mehmet | |
dc.language.iso | en | en_US |
dc.publisher | Walter de Gruyter Gmbh | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | q-integers | en_US |
dc.subject | q-Durrmeyer operator | en_US |
dc.subject | limit q-Durrmeyer operator | en_US |
dc.subject | rate of convergence | en_US |
dc.subject | analytic function | en_US |
dc.title | ON THE RATE OF CONVERGENCE FOR THE <i>q</i>-DURRMEYER POLYNOMIALS IN COMPLEX DOMAINS | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication | 5010d3f8-f1f2-4750-b086-e5b5edacaef7 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- On the rate of convergence for the MASLO_2024_OG_SO_MT.pdf
- Size:
- 278.83 KB
- Format:
- Adobe Portable Document Format