Deep Learning Based Fall Detection Using Smartwatches for Healthcare Applications

dc.authorid Damaševičius, Robertas/0000-0001-9990-1084
dc.authorid Misra, Sanjay/0000-0002-3556-9331
dc.authorid Şengül, Gökhan/0000-0003-2273-4411
dc.authorid Karakaya, Murat/0000-0002-9542-6965
dc.authorscopusid 8402817900
dc.authorscopusid 16637174900
dc.authorscopusid 56962766700
dc.authorscopusid 56811478400
dc.authorscopusid 6603451290
dc.authorwosid Damaševičius, Robertas/E-1387-2017
dc.authorwosid Misra, Sanjay/K-2203-2014
dc.authorwosid Şengül, Gökhan/AAA-2788-2022
dc.authorwosid Sengul, Gokhan/G-8213-2016
dc.authorwosid Karakaya, Murat/A-4952-2013
dc.contributor.author Sengul, Gokhan
dc.contributor.author Karakaya, Murat
dc.contributor.author Misra, Sanjay
dc.contributor.author Abayomi-Alli, Olusola O.
dc.contributor.author Damasevicius, Robertas
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:17:17Z
dc.date.available 2024-07-05T15:17:17Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Sengul, Gokhan; Karakaya, Murat] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Misra, Sanjay] Ostfold Univ Coll, Dept Comp Sci & Commun, Halden, Norway; [Abayomi-Alli, Olusola O.; Damasevicius, Robertas] Kaunas Univ Technol, Dept Software Engn, Kaunas, Lithuania en_US
dc.description Damaševičius, Robertas/0000-0001-9990-1084; Misra, Sanjay/0000-0002-3556-9331; Şengül, Gökhan/0000-0003-2273-4411; Karakaya, Murat/0000-0002-9542-6965 en_US
dc.description.abstract We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activityout cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved. en_US
dc.identifier.citationcount 28
dc.identifier.doi 10.1016/j.bspc.2021.103242
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-85120938038
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.bspc.2021.103242
dc.identifier.uri https://hdl.handle.net/20.500.14411/1738
dc.identifier.volume 71 en_US
dc.identifier.wos WOS:000710813800001
dc.identifier.wosquality Q2
dc.institutionauthor Şengül, Gökhan
dc.institutionauthor Karakaya, Kasım Murat
dc.institutionauthor Mısra, Sanjay
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 55
dc.subject Fall detection en_US
dc.subject Activity recognition en_US
dc.subject Smartwatch en_US
dc.subject Digital health en_US
dc.title Deep Learning Based Fall Detection Using Smartwatches for Healthcare Applications en_US
dc.type Article en_US
dc.wos.citedbyCount 37
dspace.entity.type Publication
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication 93f27ee1-19eb-42dc-b4eb-a3cc7dc4b057
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections