Doruk, Reşat Özgür

Loading...
Profile Picture
Name Variants
R.Ö.Doruk
Reşat Özgür Doruk
D.,Resat Ozgur
R. Ö. Doruk
R., Doruk
Doruk, Resat Ozgur
Doruk,R.O.
R.,Doruk
Doruk R.
D.,Reşat Özgür
özgür Doruk R.
Reşat Özgür, Doruk
R. O. Doruk
Özgür Doruk R.
R.O.Doruk
Doruk,R.Ö.
D., Reşat Özgür
D., Resat Ozgur
Resat Ozgur, Doruk
Doruk,Resat Ozgur
Doruk, Reşat Özgür
Doruk, R. Ozgur
Job Title
Profesör Doktor
Email Address
resat.doruk@atilim.edu.tr
Main Affiliation
Electrical-Electronics Engineering
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

27

Articles

14

Citation Count

21

Supervised Theses

12

Scholarly Output Search Results

Now showing 1 - 5 of 5
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Bozucu Torklar Altında İzdüşümsel Doğru Akım Motoru Kontrolü
    (Gazi Univ, Fac Engineering Architecture, 2018) Doruk, Reşat Özgür; Zuglam, İsmail; Electrical-Electronics Engineering
    Bu çalışmada, izdüşümsel doğrusal kareselservo geri beslemesi (P-LQSF) yöntemiyle tasarlanmış bir birdoğru akım (DC) motoru denetim yaklaşımı sunulmaktadır. Tasarlanan denetleyicinin kararlılığı girdidenhale-kararlılıkyaklaşımından yola çıkarak incelenmektedir. İzdüşümsel kontrol yöntemi, tam durumdeğişkeni geri beslemeli bir denetleyicinin özdeğer spektrumunu çıktı geri beslemesi kullanarak yaklaşıkolarak elde etmeyi amaçlar. Tasarlanan denetleyicilerin kararlılık analizi hem teorik hem de sayısalbenzetim yoluyla incelenecektir. Temel doğrusal kararlılığın yanı sıra, bozucu etkilerin kapalı döngüyü birdış girdi olarak etkilemesinden yola çıkarak girdiden-çıktıya-kararlılık kavramından yararlanılması olanaklıolabilmektedir. Sonuç olarak bir bozucu etkiden-hale-kararlılık yaklaşımı ortaya çıkmaktadır. Tasarımlar,elde edilen bu yaklaşımla incelenecektir. Performanslar ise sayısal benzetimler yoluyla görülecektir.
  • Article
    Geri Adımlama Tekni˘gi ile Bir Dc Motorun Konum ve Hız Kontrolü
    (2018) Doruk, Reşat Özgür; Zuglem, Ahmed; Electrical-Electronics Engineering
    Bu çalışmada Lyapunov’un ikinci kararlılık yönteminin bir özyinelemeli biruyarlaması olan geri adımlama yöntemi fırçalı bir doğru akım motorunun denetimineuygulanmaktadır. Bozucu etkilerden bağımsız bir ortamda hem hız, hem de konumdenetiminde başarı ile uygulanabildiği görülen yöntemin bozucu etkiler altındakiperformasını inceleyebilmek için hem teorik hem de benzetim tabanlı analizler yapılmıştır.Teorik incelemede girdiden-duruma kararlılık kuramından yararlanılmıştır. Bu noktadagirdi bozucu etkileri (bozucu torklar) temsil etmektedir. Yöntem uygulandığında, denetimkazançlarının seçiminde bir alt sınırın var olduğu ve bozucu etkilerden bağışık ortamdaolduğu gibi serbest seçilmesinin uygun olmayabileceği anlaşılmaktadır. Benzetimlerdeise bozucu etkiler rastgele sinyaller olarak modellenmiş olup, denetim kazançlarıyükseltildiğinde bozucu etkilerin baskılanabildiği gözlemlenmektedir. Geri adımlamatekniğinin bozucu etkiler altında kararlılık analizi ile birlikte doğru akım motorunundenetimine uygulanması literatüre önemli bir katkı sunmaktadır.
  • Article
    Fitzhugh-nagumo Modelleri İçin Çatallanma Denetimi
    (2018) Doruk, Reşat Özgür; Ihnısh, Hamza; Electrical-Electronics Engineering
    Bu yazıda tekil Fitzhugh-Nagumo (FN) nöron modelleri için teorik bir çatallanma denetim çalışması sunulmaktadır. Değişmekte olan parametreler için çatallanma analizleri MATLAB üzerinde çalışan MATCONT uygulaması ile yapılmıştır. Söz konusu analizde 5 Hopf (H) ve 1 adette Sınır Noktası/Eyer Dü˘gümü (LP) olgusuna rastlanmıştır. Hopf tipi çatallanmalar izdüşümsel denetim ile desteklenmiş arındırma süzgeçleri kullanılarak sağlanmıştır. Arındırma süzgeçleri birinci ve ikinci derece olarak uygulanmıştır. Birinci derece süzgeç ikinci dereceye göre daha avantajlı oldu˘gu anlaşılmıştır. Birinci derece süzgeç hem daha uygulanabilir olmakta hem de daha hızlı davranmaktadır. LP türü çatallanmalar için derecesinden bağımsız olarak arındırma süzgecinden yapılan çıktı geri beslemesi başarılı olamamakta ve bu nedenle birini derece süzgecle beraber birde zar potansiyelinden ek bir geri besleme alınmaktadır. Bunun dezavantajı süzgecin yüksek geçirgen niteli˘ginin bozulmasına neden olmakta ve LP denge noktasının korunmasına olanak vermemektedir. Bu soruna çözüm olması için doğrusal olmayan bir denetleyici tasarımıda gösterilmektedir. Bunun tek dezavantajı orjinal denge noktaları korunamaktadır. Sonuçlar benzetimlerle desteklenmektedir.
  • Article
    Citation - WoS: 0
    Citation - Scopus: 0
    Fitting a Recurrent Dynamical Neural Network To Neural Spiking Data: Tackling the Sigmoidal Gain Function Issues
    (Tubitak Scientific & Technological Research Council Turkey, 2019) Doruk, Reşat Özgür; Electrical-Electronics Engineering
    This is a continuation of a recent study (Doruk RO, Zhang K. Fitting of dynamic recurrent neural networkmodels to sensory stimulus-response data. J Biol Phys 2018; 44: 449-469), where a continuous time dynamical recurrentneural network is fitted to neural spiking data. In this research, we address the issues arising from the inclusion ofsigmoidal gain function parameters to the estimation algorithm. The neural spiking data will be obtained from the samemodel as that of Doruk and Zhang, but we propose a different model for identification. This will also be a continuoustime recurrent neural network, but with generic sigmoidal gains. The simulation framework and estimation algorithmsare kept similar to that of Doruk and Zhang so that we can have a solid base to compare the results. We evaluatethe estimation performance in two different ways. First, we compare the firing rate responses of the original and theestimated model. We find that responses of both models to the same stimuli are similar. Secondly, we evaluate variationsof the standard deviations of the estimates against a number of samples and stimulus parameters. They show a similarpattern to that of Doruk and Zhang. We thus conclude that our model serves as a reasonable alternative provided thatfiring rate is the response of interest (to any stimulus).
  • Article
    Neuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Data
    (2018) Doruk, Reşat Özgür; Electrical-Electronics Engineering
    We present a modeling study aiming at the estimation of the parameters of a single neuron model from neuralspiking data. The model receives a stimulus as input and provides the firing rate of the neuron as output. The neuralspiking data will be obtained from point process simulation. The resultant data will be used in parameter estimationbased on the inhomogeneous Poisson maximum likelihood method. The model will be stimulated by various forms ofstimuli, which are modeled by a Fourier series (FS), exponential functions, and radial basis functions (RBFs). Tabulatedresults presenting cases with different sample sizes (# of repeated trials), stimulus component sizes (FS and RBF),amplitudes, and frequency ranges (FS) will be presented to validate the approach and provide a means of comparison.The results showed that regardless of the stimulus type, the most effective parameter on the estimation performanceappears to be the sample size. In addition, the lowest variance of the estimates is obtained when a Fourier series stimulusis applied in the estimation.