Doruk, Reşat Özgür

Loading...
Profile Picture
Name Variants
R.Ö.Doruk
Reşat Özgür Doruk
D.,Resat Ozgur
R. Ö. Doruk
R., Doruk
Doruk, Resat Ozgur
Doruk,R.O.
R.,Doruk
Doruk R.
D.,Reşat Özgür
özgür Doruk R.
Reşat Özgür, Doruk
R. O. Doruk
Özgür Doruk R.
R.O.Doruk
Doruk,R.Ö.
D., Reşat Özgür
D., Resat Ozgur
Resat Ozgur, Doruk
Doruk,Resat Ozgur
Doruk, Reşat Özgür
Doruk, R. Ozgur
Job Title
Profesör Doktor
Email Address
resat.doruk@atilim.edu.tr
Main Affiliation
Electrical-Electronics Engineering
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

0

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

0

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

0

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

1

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

0

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

1

Research Products
This researcher does not have a Scopus ID.
Documents

20

Citations

78

Scholarly Output

33

Articles

16

Views / Downloads

171/2205

Supervised MSc Theses

10

Supervised PhD Theses

7

WoS Citation Count

40

Scopus Citation Count

51

WoS h-index

4

Scopus h-index

5

Patents

0

Projects

0

WoS Citations per Publication

1.21

Scopus Citations per Publication

1.55

Open Access Source

11

Supervised Theses

17

Google Analytics Visitor Traffic

JournalCount
Turkish Journal of Electrical Engineering and Computer Sciences2
Computer Methods and Programs in Biomedicine2
Journal of Biological Physics2
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi2
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi1
Current Page: 1 / 3

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Article
    Citation - WoS: 3
    Citation - Scopus: 6
    Investigating the Impact of Two Major Programming Environments on the Accuracy of Deep Learning-Based Glioma Detection From Mri Images
    (Mdpi, 2023) Yilmaz, Vadi Su; Akdag, Metehan; Dalveren, Yaser; Doruk, Resat Ozgur; Kara, Ali; Soylu, Ahmet
    Brain tumors have been the subject of research for many years. Brain tumors are typically classified into two main groups: benign and malignant tumors. The most common tumor type among malignant brain tumors is known as glioma. In the diagnosis of glioma, different imaging technologies could be used. Among these techniques, MRI is the most preferred imaging technology due to its high-resolution image data. However, the detection of gliomas from a huge set of MRI data could be challenging for the practitioners. In order to solve this concern, many Deep Learning (DL) models based on Convolutional Neural Networks (CNNs) have been proposed to be used in detecting glioma. However, understanding which CNN architecture would work efficiently under various conditions including development environment or programming aspects as well as performance analysis has not been studied so far. In this research work, therefore, the purpose is to investigate the impact of two major programming environments (namely, MATLAB and Python) on the accuracy of CNN-based glioma detection from Magnetic Resonance Imaging (MRI) images. To this end, experiments on the Brain Tumor Segmentation (BraTS) dataset (2016 and 2017) consisting of multiparametric magnetic MRI images are performed by implementing two popular CNN architectures, the three-dimensional (3D) U-Net and the V-Net in the programming environments. From the results, it is concluded that the use of Python with Google Colaboratory (Colab) might be highly useful in the implementation of CNN-based models for glioma detection. Moreover, the 3D U-Net model is found to perform better, attaining a high accuracy on the dataset. The authors believe that the results achieved from this study would provide useful information to the research community in their appropriate implementation of DL approaches for brain tumor detection.