Emin, Ali

Loading...
Profile Picture
Name Variants
E., Ali
Ali, Emin
A.,Emin
E.,Ali
Emin,A.
Ali Emin
A., Emin
Emin,Ali
Emin, Ali
Job Title
Doktor Öğretim Üyesi
Email Address
ali.amini@atilim.edu.tr
Main Affiliation
Automotive Engineering
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

0

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

0

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

0

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

4

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

0

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

0

Research Products
Documents

21

Citations

610

h-index

11

Documents

19

Citations

527

Scholarly Output

8

Articles

6

Views / Downloads

37/6568

Supervised MSc Theses

1

Supervised PhD Theses

0

WoS Citation Count

71

Scopus Citation Count

82

WoS h-index

4

Scopus h-index

4

Patents

0

Projects

3

WoS Citations per Publication

8.88

Scopus Citations per Publication

10.25

Open Access Source

3

Supervised Theses

1

Google Analytics Visitor Traffic

JournalCount
2024 International Mechanical Engineering Congress and Exposition-IMECE -- NOV 17-21, 2024 -- Portland, OR1
Actuators1
Energies1
International Journal of Thermal Sciences1
Journal of Energy Storage1
Current Page: 1 / 2

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Article
    Experimental Investigation of Energy Efficiency, SOC Estimation, and Real-Time Speed Control of a 2.2 kW BLDC Motor with Planetary Gearbox under Variable Load Conditions
    (MDPI, 2025) Abouseda, Ayman Ibrahim; Doruk, Resat; Emin, Ali; Lopez-Guede, Jose Manuel
    This study presents a comprehensive experimental investigation of a 2.2 kW brushless DC (BLDC) motor integrated with a three-shaft planetary gearbox, focusing on overall energy efficiency, battery state of charge (SOC) estimation, and real-time speed control under variable load conditions. In the first stage, the gearbox transmission ratio was experimentally verified to establish the kinematic relationship between the BLDC motor and the eddy current dynamometer shafts. In the second stage, the motor was operated in open loop mode at fixed reference speeds while variable load torques ranging from 1 to 7 N.m were applied using an AVL dynamometer. Electrical voltage, current, and rotational speed were measured in real time through precision transducers and a data acquisition interface, enabling computation of overall efficiency and SOC via the Coulomb counting method. The open loop results demonstrated that maximum efficiency occurred in the intermediate-to-high-speed region (2000 to 2800 rpm) and at higher load torques (5 to 7 N.m) while locking the third gearbox shaft produced negligible parasitic losses. In the third stage, a proportional-integral-derivative (PID) controller was implemented in closed loop configuration to regulate motor speed under the same variable load scenarios. The closed loop operation improved the overall efficiency by approximately 8-20 percentage points within the effective operating range of 1600-2500 rpm, reduced speed droop, and ensured precise tracking with minimal overshoot and steady-state error. The proposed methodology provides an integrated experimental framework for evaluating the dynamic performance, energy efficiency, and battery utilization of BLDC motor planetary gearbox systems, offering valuable insights for electric vehicle and hybrid electric vehicle (HEV) drive applications.