Ertan, Hulusi Bülent

Loading...
Profile Picture
Name Variants
Bülent Ertan H.
Ertan, HB
Ertan,H.B.
Ertan, H. B.
E.,Hulusi Bülent
Ertan, Hulusi Bulent
H.,Ertan
Bulent Ertan H.
ERTAN, HB
H. B. Ertan
H., Ertan
Ertan, H. Bulent
Hulusi Bulent, Ertan
Hulusi Bülent, Ertan
Ertan, Hulusi Bülent
E.,Hulusi Bulent
H.B.Ertan
E., Hulusi Bulent
Ertan H.
E., Hulusi Bülent
Bulent Ertan,H.
Job Title
Profesor Doktor
Email Address
bulent.ertan@atilim.edu.tr
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

25

Articles

3

Citation Count

26

Supervised Theses

2

Scholarly Output Search Results

Now showing 1 - 10 of 25
  • Conference Object
    An Approach for Improving Performance of Sensorless Field Control
    (Institute of Electrical and Electronics Engineers Inc., 2018) Bulent Ertan,H.; Filci,T.; Electrical-Electronics Engineering
    Sensorless vector control is preferred in some applications, because there is no need for speed or position sensor. However, by their very nature, they are susceptible to making position error in rotor position estimation. As a consequence the performance of motor drives employing this technology is lower than those which employ sensors. This paper presents a new approach which identifies and uses rotor slot harmonic current component in the stator current to identify rotor position. The time taken by the algorithm used is short enough to be embedded within the vector control algorithm. The essence of the algorithm is treating the current component due to rotor slot harmonics as an amplitude modulated signal on the fundamental current component. The magnitude of this current component is identified via demodulation. Using this information rotor position and speed can be determined. This approach is tested on a commercial induction motor and some results are presented which illustrate that rotor position can be successfully determined. © 2018 IEEE.
  • Conference Object
    Sizing of Series Hybrid Electric Vehicle With Hybrid Energy Storage System
    (Institute of Electrical and Electronics Engineers Inc., 2018) Ertan,H.B.; Arikan,F.R.; Electrical-Electronics Engineering
    This work is aimed to develop a realistic design procedure for a series hybrid plug in vehicle, with a view to use it in a mathematical design optimization. The purpose of the optimization is minimizing the initial cost, as well as the running costs of the vehicle. Therefore there is a multi-objective design optimization problem in hand. Such problems are very suitable for mathematical optimization, however, accurate and not time consuming design procedure is a must, to obtain meaningful results. This paper introduces such a design procedure. The approach is illustrated on a commercial vehicle simulation model. The accuracy of the model is illustrated by comparing simulation results with vehicle test results. © 2018 IEEE.
  • Conference Object
    Standstill Estimation of Stator Resistance of Induction Motors with Novel Innovation-Based Adaptive Extended Kalman Filter
    (Institute of Electrical and Electronics Engineers Inc., 2021) Inan,R.; Yirtar,M.Z.; Bulent Ertan,H.; Electrical-Electronics Engineering
    In this study, a method is developed to identify stator resistance of an induction motor (IM) at standstill in the self-tuning. An innovation-based adaptive extended Kalman filter (IAEKF) estimator in which the process noise is dynamically updated with an adaptive mechanism different from the conventional extended Kalman filter (EKF) is designed to estimate stator resistance with αβ- stator stationary axis components of stator current and αβ- components of stator flux of an IM. The reason for estimating the stator flux and stator current together with the stator resistance is to both increase the stability of the proposed estimator algorithm by using the correlation between the parameters and states in the non-linear inputs applied to the estimator and obtain the motor flux information needed by the control system. In the proposed IAEKF algorithm, a stator flux-based IM model is used for prediction purposes. The standstill estimation performance of the proposed novel IAEKF is tested with both sinusoidal and PWM power supplies, The real-time estimation results show the effectiveness and prediction accuracy of the proposed stochastic-based estimator. © 2021 IEEE.
  • Conference Object
    Integration of Offshore Wind Farm Plants To the Power Grid Using an Hvdc Line Transmission
    (Ieee, 2019) Berkani, Abderrahmane; Pourkeivannour, Siamak; Negadi, Karim; Boumediene, Bachir; Allaoui, Tayeb; Ertan, H. Bulent; Electrical-Electronics Engineering
    This paper investigates an integration of Offshore Wind Farm Plants with Power Grid Based on an HVDC line Interconnection. Large offshore wind farms are installed in the North Sea area using modern multi-megawatt wind turbines. The Voltage source converter - high voltage direct current VSC-HVDC is a suitable means of integrating such large and distant offshore Wind Power Plants (WPP) which need long submarine cable transmission to the onshore grid. The offshore network then becomes very different from the conventional grid, in that it is only connected to electronic power converters. A wind farm model with VSC-HVDC connection is developed. This work presents the modeling and simulation of such a system. The dynamic study of system performance under the fluctuations of wind energy and wind speed was studied to demonstrate the effectiveness of the control strategy. The validity of the proposed control technique is verified by Matlab/Simulink. Simulation results presented in this paper confirm the validity and feasibility of the proposed control approach, and can be tested on experimental setup.
  • Conference Object
    An Approach for Improving Performance of Sensorless Field Control
    (Institute of Electrical and Electronics Engineers Inc., 2018) Bulent Ertan,H.; Filci,T.; Electrical-Electronics Engineering
    Sensorless vector control is preferred in some applications, because there is no need for speed or position sensor. However, by their very nature, they are susceptible to making position error in rotor position estimation. As a consequence the performance of motor drives employing this technology is lower than those which employ sensors. This paper presents a new approach which identifies and uses rotor slot harmonic current component in the stator current to identify rotor position. The time taken by the algorithm used is short enough to be embedded within the vector control algorithm. The essence of the algorithm is treating the current component due to rotor slot harmonics as an amplitude modulated signal on the fundamental current component. The magnitude of this current component is identified via demodulation. Using this information rotor position and speed can be determined. This approach is tested on a commercial induction motor and some results are presented which illustrate that rotor position can be successfully determined. © 2018 IEEE.
  • Conference Object
    Comparison of a Magnetically Geared Pm Wind Generator With Radial Flux Generator
    (Ieee, 2018) Zeinali, Reza; Ertan, H. Bulent; Electrical-Electronics Engineering
    Direct drive wind turbines promise to be more reliable and efficient than commonly used geared wind turbines. This paper presents part of a study aiming to identify whether "Dual Stator Spoke Array Vernier Permanent Magnet" (DSSAVPM) generators present an advantage, regarding size or cost, as compared to the conventional radial flux PM machine for direct drive applications. For this purpose, design of both machines is optimized for the same specifications and using the same design criteria. Optimization results are presented and discussed. It is found that a DSSVPM generator design, with almost the same performance as the RFPM generator, but with 45% of its mass is possible.
  • Conference Object
    Comparison of a Magnetically Geared Pm Wind Generator With Radial Flux Generator
    (Institute of Electrical and Electronics Engineers Inc., 2018) Zeinali,R.; Ertan,H.B.; Electrical-Electronics Engineering
    Direct drive wind turbines promise to be more reliable and efficient than commonly used geared wind turbines. This paper presents part of a study aiming to identify whether 'Dual Stator Spoke Array Vernier Permanent Magnet' (DSSAVPM) generators present an advantage, regarding size or cost, as compared to the conventional radial flux PM machine for direct drive applications. For this purpose, design of both machines is optimized for the same specifications and using the same design criteria. optimization results are presented and discussed. It is found that a DSSVPM generator design, with almost the same performance as the RFPM generator, but with 45% of its mass is possible. © 2018 IEEE.
  • Conference Object
    Designing High Power Density Induction Motors for Electric Propulsion
    (Ieee, 2022) Ertan, H. Bulent; Siddique, M. Salik; Koushan, Salar; Azuaje-Berbeci, Bernardo J.; Electrical-Electronics Engineering
    Designing high-power-density electric motors for propulsion has become an increasingly important issue in the past few decades. This is not only because electric vehicles are projected to become the main private transportation means in near future, but also because of the ever so important metro and railway transport requirements. Along with these application areas, electric aircraft propulsion is also coming into focus in recent years. Electric motors for traction are required to have high torque density, high efficiency over a wide speed range and are required to be robust. In recent years, permanent magnet (PM) motors became the favorite choice for such applications because of their higher efficiency than other types of motors. Increasing demand for permanent magnets is likely to cause supply problems. Therefore, permanent magnet-free alternative motor types are of much interest. In this paper, the authors present the design of a 125 kW induction motor for railway application. This design has 3-times the power density of a commercial induction motor. The designed motor is manufactured and its test results are used for establishing an accurate finite-element model for the prediction of its performance. This model is used to investigate the effect of magnetic loading choice, slot shape and magnetic material choice on the efficiency of the motor. It is shown that with the same basic dimensions the efficiency of the motor can be increased to 96% which is comparable with a similar size PM motor.
  • Article
    Inductance Measurement Methods for Surface-Mount Permanent Magnet Machines
    (Ieee-inst Electrical Electronics Engineers inc, 2023) Ertan, H. Bulent; Sahin, Ilker; Electrical-Electronics Engineering
    Analytical performance estimation of a permanent magnet (PM) motor requires an accurate equivalent circuit model. In a lumped electrical model of a PM motor, resistance and inductances appear as passive elements, which are used to represent the phase winding resistance, inductance, core loss, etc. There is currently no available standard for parameter measurement of PM motors. In the literature, there are many studies on inductance measurement. However, they are applied to different types of motors. The purpose of this study is to evaluate those different inductance measurement methods, on the same motors, to identify whether they lead to the same result. Also, it was aimed to find out the difficulties involved in the measurement process. This study concentrates on determining the d -axis and q -axis inductances of two different surface-mount PM motors at standstill and under running conditions. The standstill measurement methods evaluated include the "current decay " method and the "dc inductance bridge " method as well as more common methods. The dependence of the inductances on the current magnitude, frequency, and excitation signal waveform is investigated. Measurements with PWM and sinusoidal ac voltage excitation are found to give similar results. The tests indicated that the "current decay " method is prone to measurement errors especially when the phase resistance is low. It is discovered that inductance measurements from standstill tests are independent of frequency for all practical purposes. Next, the same inductances are measured, while the test motors are running. The methods considered include; inductance measurement from no-load test, zero power factor (PF) load test, and unity PF load test; while the machine is in generating mode. Furthermore, a new inductance measurement method is introduced where the measurement is made while the test motor is driven with a vector-controlled drive. Finally, inductance measurement results from different standstill tests and running tests are compared and evaluated.
  • Conference Object
    An Approach for Improving Performance of Sensorless Field Control
    (Ieee, 2018) Ertan, H. Bulent; Filci, Tayfun; Electrical-Electronics Engineering
    Sensorless vector control is preferred in some applications, because there is no need for speed or position sensor. However, by their very nature, they are susceptible to making position error in rotor position estimation. As a consequence the performance of motor drives employing this technology is lower than those which employ sensors. This paper presents a new approach which identifies and uses rotor slot harmonic current component in the stator current to identify rotor position. The time taken by the algorithm used is short enough to be embedded within the vector control algorithm. The essence of the algorithm is treating the current component due to rotor slot harmonics as an amplitude modulated signal on the fundamental current component. The magnitude of this current component is identified via demodulation. Using this information rotor position and speed can be determined. This approach is tested on a commercial induction motor and some results are presented which illustrate that rotor position can be successfully determined.