An approach for Improving Performance of Sensorless Field Control

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

Sensorless vector control is preferred in some applications, because there is no need for speed or position sensor. However, by their very nature, they are susceptible to making position error in rotor position estimation. As a consequence the performance of motor drives employing this technology is lower than those which employ sensors. This paper presents a new approach which identifies and uses rotor slot harmonic current component in the stator current to identify rotor position. The time taken by the algorithm used is short enough to be embedded within the vector control algorithm. The essence of the algorithm is treating the current component due to rotor slot harmonics as an amplitude modulated signal on the fundamental current component. The magnitude of this current component is identified via demodulation. Using this information rotor position and speed can be determined. This approach is tested on a commercial induction motor and some results are presented which illustrate that rotor position can be successfully determined.

Description

Keywords

sensorless vector control, field orientation, current harmonics, position sensing, motor speed prediction

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

N/A

Scopus Q

N/A

Source

10th International Conference and Expositions on Electrical and Power Engineering (EPE) -- OCT 18-19, 2018 -- Iasi, ROMANIA

Volume

Issue

Start Page

1080

End Page

1086

Collections