Aydın, Ayhan
Loading...
Profile URL
Name Variants
Aydın,A.
Aydin, Ayhan
A.,Aydın
A., Ayhan
Aydın, Ayhan
Aydin,Ayhan
Ayhan Aydın
A., Aydın
Aydin A.
A.,Aydin
Ayhan, Aydin
Aydın A.
AYDIN A.
A.,Ayhan
A., Aydin
Aydin,A.
Ayhan, Aydın
Aydin, Ayhan
A.,Aydın
A., Ayhan
Aydın, Ayhan
Aydin,Ayhan
Ayhan Aydın
A., Aydın
Aydin A.
A.,Aydin
Ayhan, Aydin
Aydın A.
AYDIN A.
A.,Ayhan
A., Aydin
Aydin,A.
Ayhan, Aydın
Job Title
Profesör Doktor
Email Address
ayhan.aydin@atilim.edu.tr
Main Affiliation
Mathematics
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

2
Research Products
7
AFFORDABLE AND CLEAN ENERGY

2
Research Products
8
DECENT WORK AND ECONOMIC GROWTH

11
Research Products
9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

3
Research Products
10
REDUCED INEQUALITIES

2
Research Products
11
SUSTAINABLE CITIES AND COMMUNITIES

1
Research Products
13
CLIMATE ACTION

7
Research Products
14
LIFE BELOW WATER

2
Research Products
15
LIFE ON LAND

1
Research Products
17
PARTNERSHIPS FOR THE GOALS

7
Research Products

This researcher does not have a Scopus ID.

Google Analytics Visitor Traffic
| Journal | Count |
|---|
Current Page: 1 / NaN
Scopus Quartile Distribution
Quartile distribution chart could not be loaded because of an error. Please refresh the page or try again later.
Competency Cloud

29 results
Scholarly Output Search Results
Now showing 1 - 10 of 29
Master Thesis Rosenau-Korteweg-de Vries regularized long wave denklemi için doğrusal kapalı yöntemler(2015) Al-omaırı, Salım; Aydın, AyhanBu tez çalışmasında, genel Rosenau--Korteweg de Vries (Rosenau--KdV) ile Rosenau-- Regülerize Uzun Dalga (Rosenau--Regularized Long Wave)(rosenau-RLW) denklemlerini birleştiren Rosanau-Korteweg de--Veries Regülerize Uzun Dalga (Rosenau--KdV--RLW) denkleminin sayısal çözümü ele alınmıştır. Denklemin kütle ve enerji olarak adlandırılan iki tane korunum özelliği ispatlanmıştır. Amaç bu özellikleri tam olarak koruyan yada küçük bir hata ile koruyan sayısal yöntemler geliştirmektir. Rosenau--KdV--RLW denkleminin başlangıç--sınır değer problemi için iki tane sayısal yöntem önerilmiştir. Yöntemlerden bir tanesi korunum özelliği olan bir yöntem olup diğer yöntem korunum özelliği olmayan bir yöntemdir. Korunum özelliği olan yöntemin denklemin enerjisini koruduğu ispatlanmıştır. Ayrıca yöntem ikinci mertebeden doğruluğa sahip ve koşulsuz kararlıdır. İkinci yöntem korunum özelliği olmayan bir yöntemdir. Bu yöntem birinci mertebeden doğruluğa sahip olup koşullu kararlıdır. Sayısal sonuçlar, her iki yöntemin de uzun zaman aralığında denklemin soliter dalgasını iyi simule ettiğini göstermiştir. Ayrıca, sayısal sonuçlar korunum özelliği olan yöntemin, denklemin enerjisini koruduğunu da doğrulamıştır.Master Thesis Doğrusal Olmayan Black-scholes Denklemi için Üstel Sonlu Fark Yöntemi(2017) Omar, Fathıa; Aksoy, Ümit; Aydın, AyhanBu tezde, likit olmayan bir piyasada ortaya çıkan doğrusal olmayan Black-Scholes denklemi için üstel sonlu fark yöntemi çalışılmıştır. 1. Bölüm opsiyon fiyatlandırması problemi terminolojisi, temel tanımlar ve literatür taramasına ayrılmıştır. 2. Bölümde Black-Scholes modeli ve Black-Scholes denklemi için sonlu fark yöntemleri gözden geçirilmiştir. 3. Bölümde doğrusal olmayan Black-Scholes denklemi için açık sonlu fark yöntemi, monotonluk, kararlılık ve tutarlılık sonuçları ile birlikte çalışılmıştır. 4. Bölümde doğrusal ve doğrusal olmayan Black-Scholes denklemleri için üstel sonlu fark yöntemi uygulanmıştır. Ayrıca, yöntemin tutarlılığı ve yakınsaklığı araştırılmıştır. Teorik sonuçları doğrulamak için sayısal örnekler verilmiştir. Sayısal sonuçlar, üstel sonlu fark yönteminin açık sonlu fark yönteminden daha iyi performans sergilediğini göstermiştir. 5. Bölüm sonuç kısmına ayrılmıştır.Article Citation - WoS: 4Citation - Scopus: 5An Unconventional Finite Difference Scheme for Modified Korteweg-De Vries Equation(Hindawi Ltd, 2017) Koroglu, Canan; Aydin, AyhanA numerical solution of the modified Korteweg-de Vries (MKdV) equation is presented by using a nonstandard finite difference (NSFD) scheme with theta method which includes the implicit Euler and a Crank-Nicolson type discretization. Local truncation error of the NSFD scheme and linear stability analysis are discussed. To test the accuracy and efficiency of the method, some numerical examples are given. The numerical results of NSFD scheme are compared with the exact solution and a standard finite difference scheme. The numerical results illustrate that the NSFD scheme is a robust numerical tool for the numerical integration of the MKdV equation.Article Citation - WoS: 23Citation - Scopus: 25Multisymplectic Integration of n-coupled Nonlinear Schrodinger Equation With Destabilized Periodic Wave Solutions(Pergamon-elsevier Science Ltd, 2009) Aydin, AyhanN-coupled nonlinear Schrodinger equation (N-CNLS) is shown to be in multisymplectic form. 3-CNLS equation is studied for analytical and numerical purposes. A new six-point scheme which is equivalent to the multisymplectic Preissman scheme is derived for 3-CNLS equation. A new periodic wave solution is obtained and its stability analysis is discussed. 3-CNLS equation is integrated for destabilized periodic solutions both for integrable and non-integrable cases by multisymplectic six-point scheme. Different kinds of evolutions are observed for different parameters and coefficients of the system. Numerical results show that, the multisymplectic six-point scheme has excellent local and global conservation properties in long-time computation. (C) 2008 Elsevier Ltd. All rights reserved.Article Citation - WoS: 9Citation - Scopus: 10A nonstandard numerical method for the modified KdV equation(indian Acad Sciences, 2017) Aydin, Ayhan; Koroglu, CananA linearly implicit nonstandard finite difference method is presented for the numerical solution of modified Korteweg-de Vries equation. Local truncation error of the scheme is discussed. Numerical examples are presented to test the efficiency and accuracy of the scheme.Article Citation - WoS: 17Citation - Scopus: 16Multisymplectic Box Schemes for the Complex Modified Korteweg-De Vries Equation(Amer inst Physics, 2010) Aydin, A.; Karasozen, B.In this paper, two multisymplectic integrators, an eight-point Preissman box scheme and a narrow box scheme, are considered for numerical integration of the complex modified Korteweg-de Vries equation. Energy and momentum preservation of both schemes and their dispersive properties are investigated. The performance of both methods is demonstrated through numerical tests on several solitary wave solutions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456068]Master Thesis Üçlü Lineer Olmayan Schrödinger Denklemi için Yapı Koruyan Sayısal Yöntemler(2016) Ertuğ, Sevim; Aydın, AyhanBirleşik N denklemli lineer olmayan Schrödinger (N--CNLS) denklemi fizik, optik, kuantum mekaniği ve akışkanlar dinamiği gibi birçok alanda sıklıkla kullanılan önemli matematiksel modellerden biridir. Son yıllarda lineer olmayan Schrödinger (NLS) denklemi ve ikili lineer olmayan Schrödinger (2-CNLS) denklemi için yapılmış çok sayıda çalışma varken, üçlü lineer olmayan Schrödinger (3-CNLS) denklem sistemi için yapılan sayısal çalışma sayısı oldukça azdır. Bu denklem sistemlerinin kütle korunumu ve enerji korunumu gibi bazı fiziksel (ya da geometrik) korunum özellikleri vardir. Standard sayısal yöntemler bu tür korunumları korumamakta ve korunum sayısal çözümde bozulmaktadır. Son yıllarda bu tip özellikleri koruyan sayısal yöntemler geliştirme çalışmalarına ilgi araştırmacılar arasında hızla artmaktadır. Bu tezin amacı, üçlü lineer olmayan Schrödinger (3-CNLS) denkleminin bir veya birden fazla fiziksel (ya da geometrik) özelliğini koruyan sayısal yöntemler geliştirmektir. 3-CNLS denkleminin enerji ve kütle olmak üzere iki korunum özelliği elde edilmiştir. Daha sonra, periyodik ve homojen sınır şartları gibi uygun sınır şartları altında, bu korunumların ayrık hallerini koruyan üç tane sayısal yöntem geliştirilmiştir. İlk olarak, Ortalama Vektör Alanı (AVF) olarak bilinen bir yöntem kullanılarak, enerji koruyan sayısal yöntem tasarlanmıştır. Daha sonra denklemin kütlesini koruyan iki adımlı (ya da üç basamaklı) bir sayısal yöntem tasarlanmıştır. Son olarak, denklemin hem kütle hem de enerjisini koruyan bir adımlı (ya da iki basamaklı) sayısal yöntem tasarlanmıştır. Tasarlanan sayısal yöntemlerin doğrusal kararlılık, doğruluk ve yakınsaklık analizleri yapılmıştır. Enerji ve kütle koruyan sayısal yöntemlerin dağılım özellikleri incelenmiştir. Sayısal yöntemlerin etkinliğini ve yapı koruma özelliklerini doğrulamak için bir çok sayısal uygulamalar yapılmıştır. Sayısal sonuçlar uzun zaman aralığında her üç sayısal yöntemin de denklemin periyodik, bir soliton ve çarpışan soliton çözümlerinin de çok iyi sonuçlar verdiğini göstermektedir.Article A New Conservative Numerical Method for Strongly Coupled Nonlinear Schrödinger Equations(Springer Heidelberg, 2025) Ors, Ridvan Fatih; Koroglu, Canan; Aydin, AyhanIn this paper, a numerical method based on the conservative finite difference scheme is constructed to numerically solve the strongly coupled nonlinear Schr & ouml;dinger (SCNLS) equation. Conservative properties such as energy and mass of the SCNLS equation have been proven. In particular a fourth-order central difference scheme is used to discretize the the spatial derivative and a second-order Crank-Nicolson type discretization is used to discretize the temporal derivative. It has been shown that the proposed scheme preserves the discrete mass and energy. The existence of discrete solution is also investigated. Several numerical results are given to demonstrate the preservation properties of the new method. Also, the effect of the linear coupling parameters on the evolution of solitary waves is investigated.Article Operator Splitting of the Kdv-Burgers Type Equation With Fast and Slow Dynamics(2015) Aydın, Ayhan; Karasözen, BülentThe Korteweg de Vries-Burgers (KdV-Burgers) type equation arising from the discretiza tion of the viscous Burgers equation with fast dispersion and slow diffusion is solved using operator splitting. The dispersive and diffusive parts are discretized in space by second order conservative finite differences. The resulting system of ordinary differential equations are composed using the time reversible Strang splitting. The numerical results reveal that the periodicity of the solutions and the invariants of the KdV-Burgers equation are well preserved.Article New Conservative Schemes for Zakharov Equation(Association of Mathematicians (MATDER), 2023) Aydin,A.; Sabawe,B.A.K.New first-order and second-order energy preserving schemes are proposed for the Zakharov system. The methods are fully implicit and semi-explicit. It has been found that the first order method is also massconserving. Concrete schemes have been applied to simulate the soliton evolution of the Zakharov system. Numerical results show that the proposed methods capture the remarkable features of the Zakharov equation. We have obtained that the semi-explicit methods are more efficient than the fully implicit methods. Numerical results also demonstrate that the new energy-preserving schemes accurately simulate the soliton evolution of the Zakharov system. © MatDer.
- «
- 1 (current)
- 2
- 3
- »

