Eryılmaz, Serkan
Loading...
Name Variants
E., Serkan
Eryilmaz, S
E.,Serkan
S., Eryilmaz
Eryılmaz, Serkan
Eryilmaz, S.
Eryilmaz,S.
Eryilmaz, Serkan
S.,Eryılmaz
Eryilmaz S.
Serkan, Eryılmaz
Erylmaz S.
Eryılmaz S.
Eryilmaz, SN
S., Eryılmaz
Eryılmaz,S.
Serkan, Eryilmaz
S.,Eryilmaz
EryIlmaz S.
Eryilmaz S., Professor,
Eryilmaz, S
E.,Serkan
S., Eryilmaz
Eryılmaz, Serkan
Eryilmaz, S.
Eryilmaz,S.
Eryilmaz, Serkan
S.,Eryılmaz
Eryilmaz S.
Serkan, Eryılmaz
Erylmaz S.
Eryılmaz S.
Eryilmaz, SN
S., Eryılmaz
Eryılmaz,S.
Serkan, Eryilmaz
S.,Eryilmaz
EryIlmaz S.
Eryilmaz S., Professor,
Job Title
Profesor Doktor
Email Address
serkan.eryilmaz@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Scholarly Output
174
Articles
163
Citation Count
2501
Supervised Theses
2
174 results
Scholarly Output Search Results
Now showing 1 - 10 of 174
Article Citation Count: 10Joint Reliability Importance in Coherent Systems With Exchangeable Dependent Components(Ieee-inst Electrical Electronics Engineers inc, 2016) Eryilmaz, Serkan; Oruc, Ozlem Ege; Oger, Volkan; Industrial EngineeringIn this paper, a general formula for computing the joint reliability importance of two components is obtained for a binary coherent system that consists of exchangeable dependent components. Using the new formula, the joint reliability importance can be easily calculated if the path sets of the system are known. As a special case, an expression for the joint reliability importance of two components is also obtained for a system consisting of independent and identical components. Illustrative numerical results are presented to compare the joint reliability importance of two components in the bridge system for the two cases when the components are exchangeable dependent and when the components are independent and identical.Article Citation Count: 5On the Sums of Distributions of Order Statistics From Exchangeable Random Variables(Elsevier Science Bv, 2013) Eryilmaz, Serkan; Industrial EngineeringIn this paper, we obtain an expression between the sums of the marginal distributions of the order statistics and the common marginal distribution of an exchangeable random sequence. We also derive an expression between the sums of the joint distribution of two order statistics and the two dimensional joint distribution of an exchangeable random sequence. (C) 2013 Elsevier B.V. All rights reserved.Article Citation Count: 3Computing Reliability Indices of a Wind Power System Via Markov Chain Modelling of Wind Speed(Sage Publications Ltd, 2024) Eryilmaz, Serkan; Bulanik, Irem; Devrim, Yilser; Industrial Engineering; Energy Systems EngineeringStatistical modelling of wind speed is of great importance in the evaluation of wind farm performance and power production. Various models have been proposed in the literature depending on the corresponding time scale. For hourly observed wind speed data, the dependence among successive wind speed values is inevitable. Such a dependence has been well modelled by Markov chains. In this paper, the use of Markov chains for modelling wind speed data is discussed in the context of the previously proposed likelihood ratio test. The main steps for Markov chain based modelling methodology of wind speed are presented and the limiting distribution of the Markov chain is utilized to compute wind speed probabilities. The computational formulas for reliability indices of a wind farm consisting of a specified number of wind turbines are presented through the limiting distribution of a Markov chain. A case study that is based on real data set is also presented.Article Citation Count: 19On Reliability Analysis of a Two-Dependent Series System With a Standby Unit(Elsevier Science inc, 2012) Eryilmaz, Serkan; Tank, Fatih; Industrial EngineeringIn this paper we study a series system with two active components and a single cold standby unit. The two simultaneously working components are assumed to be dependent and this dependence is modeled by a copula function. In particular, we obtain an explicit expression for the mean time to failure of the system in terms of the copula function and marginal lifetime distributions. We also provide illustrative numerical results for different copula functions and marginal lifetime distributions. (c) 2012 Elsevier Inc. All rights reserved.Article Citation Count: 9Coherent System With Standby Components(Wiley, 2018) Eryilmaz, Serkan; Erkan, T. Erman; Industrial EngineeringA coherent system that consists of n independent components and equipped with r cold standby components is considered. A generalized mixture representation for the survival function of such a system is obtained, and it is used to examine reliability properties of the system. In particular, the effect of adding r standby components to a given set of original components is measured by computing mean time to failure of the system. The limiting behavior of the failure rate of the system is also examined using the mixture representation. The results are illustrated for a bridge system. A case study that is concerned with an oil pipeline system is also presented.Article Citation Count: 12Revisiting Discrete Time Age Replacement Policy for Phase-Type Lifetime Distributions(Elsevier, 2021) Eryilmaz, Serkan; Industrial EngineeringFor a system (or unit) whose lifetime is measured by the number cycles, according to the discrete time age replacement policy, it is replaced preventively after n cycles or correctively at failure, whichever oc-curs first. In this paper, discrete time age replacement policy is revisited when the lifetime of the system is modeled by a discrete phase-type distribution. In particular, the necessary conditions for the unique and finite replacement cycle which minimizes the expected cost per unit of time are obtained. The nec-essary conditions are mainly based on the behavior of the hazard rate. The results are illustrated for some special discrete phase-type lifetime distributions. Computational results are also presented for the optimal replacement cycle under specific real life setups. (c) 2021 Elsevier B.V. All rights reserved.Article Citation Count: 29The Number of Failed Components in a k-out-of-n< System Consisting of Multiple Types of Components(Elsevier Sci Ltd, 2018) Eryilmaz, Serkan; Industrial EngineeringThe number of failed components in a failed or operating system is a very useful quantity in terms of replacement and maintenance strategies. These quantities have been studied in several papers for a system consisting of identical components. In this paper, the number of failed components at the time when the system fails and the number of failed components when the system is working are considered for a well-known and widely applicable k-out-of-n structure. The system is assumed to have multiple types of components. That is, the system consists of components having nonidentical failure time distributions. Optimization problems are also formulated to find optimal values of the number of components of each type, and the optimal replacement time.Article Citation Count: 7Discrete Time Shock Models Involving Runs(Elsevier Science Bv, 2015) Eryilmaz, Serkan; Industrial EngineeringIn this paper, three different discrete time shock models are studied. In the first model, the failure occurs when the additively accumulated damage exceeds a certain level while in the second model the system fails upon the local damage caused by the consecutively occurring shocks. The third model is a mixed model and combines the first and second models. The survival functions of the systems under these models are obtained when the occurrences of the shocks are independent, and when they are Markov dependent over the periods. (C) 2015 Elsevier B.V. All rights reserved.Article Citation Count: 3Component Importance in Coherent Systems With Exchangeable Components(Applied Probability Trust, 2015) Eryilmaz,S.; Industrial EngineeringThis paper is concerned with the Birnbaum importance measure of a component in a binary coherent system. A representation for the Birnbaum importance of a component is obtained when the system consists of exchangeable dependent components. The results are closely related to the concept of the signature of a coherent system. Some examples are presented to illustrate the results. © 2015 Applied Probability Trust.Article Citation Count: 12On Signatures of Series and Parallel Systems Consisting of Modules With Arbitrary Structures(Taylor & Francis inc, 2014) Eryilmaz, Serkan; Industrial EngineeringThe signature of a system is a useful concept not only in the analysis of binary coherent systems but also in network reliability. Computation of system signature is a well-defined combinatorial problem. This article is concerned with the computation of signature vectors of series and parallel systems consisting of modules. We derive simple formulas for the signature and minimal signature of series and parallel systems based on signatures and minimal signatures of modules with given structures. We present computational results to illustrate the findings.