Qasrawı, Atef Fayez Hasan

Loading...
Profile Picture
Name Variants
Qasrawi, Atef Fayez
Atef Fayez Hasan, Qasrawı
Qasrawı,A.F.H.
Qasrawi,A.F.H.
Q., Atef Fayez Hasan
Q.,Atef Fayez Hasan
Atef Fayez Hasan, Qasrawi
Qasrawi, Atef Fayez Hasan
A.F.H.Qasrawı
A.F.H.Qasrawi
A., Qasrawi
A.,Qasrawı
Qasrawı, Atef Fayez Hasan
Qasrawi, A. F.
Qasrawi,A.F.
Qasrawi, AF
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef Fayez
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef
Job Title
Doçent Doktor
Email Address
atef.qasrawi@atilim.edu.tr
Main Affiliation
Department of Electrical & Electronics Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

0

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

1

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

0

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

17

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

0

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

0

Research Products
This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

222

Articles

218

Views / Downloads

639/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

1886

Scopus Citation Count

1906

WoS h-index

21

Scopus h-index

21

Patents

0

Projects

0

WoS Citations per Publication

8.50

Scopus Citations per Publication

8.59

Open Access Source

17

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Journal of Electronic Materials15
Crystal Research and Technology13
physica status solidi (a)12
Journal of Alloys and Compounds11
Materials Science in Semiconductor Processing11
Current Page: 1 / 11

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 218
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Transient and Steady State Photoelectronic Analysis in Tlinse2 Crystals
    (Pergamon-elsevier Science Ltd, 2011) Qasrawi, A. F.; Gasanly, N. M.
    The temperature and illumination effects on the transient and steady state photoconductivities of TlInSe2 crystals have been studied. Namely, two recombination centres located at 234 and at 94 meV and one trap center located at 173 meV were determined from the temperature-dependent steady state and transient photoconductivities, respectively. The illumination dependence of photoconductivity indicated the domination of sublinear and supralinear recombination mechanisms above and below 160 K, respectively. The change in the recombination mechanism is attributed to the exchange of roles between the linear recombination at the surface and trapping centres in the crystal, which become dominant as temperature decreases. The transient photoconductivity measurement allowed the determination of the capture coefficient of traps for holes as 3.11 x 10(-22) cm(-2). (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 18
    Heat Treatment Effects on the Structural and Electrical Properties of Thermally Deposited Agin5s8< Thin Films
    (Pergamon-elsevier Science Ltd, 2011) Qasrawi, A. F.; Kayed, T. S.; Ercan, Filiz
    The heat treatment effects on structural and electrical properties of thermally deposited AgIn5S8 thin films have been investigated. By increasing the annealing temperature of the sample from 450 to 500 K, we observed a change in the crystallization direction from (420) to (311). Further annealing of the AgIn5S8 films at 550, 600 and 650 K resulted in larger grain size in the (311) preferred direction. The room temperature electrical resistivity, Hall coefficient and Hall mobility were significantly influenced by higher annealing temperatures. Three impurity levels at 230, 150, and 78 meV were detected for samples annealed at 350 K. The electrical resistivity decreased by four orders of magnitude when the sample annealing temperature was raised from 350 to 450 K. The temperature dependent electrical resistivity and carrier concentration of the thin film samples were studied in the temperature ranges of 25-300 K and 140-300 K, respectively. A degenerate-nondegenerate semiconductor transition at approximately 180 was observed for samples annealed at 450 and 500 K. Similar type of transition was observed at 240 K for samples annealed at 600 and 650 K. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Dispersive Optical Constants of Tl2ingase4< Single Crystals
    (Iop Publishing Ltd, 2007) Qasrawi, A. F.; Gasanly, N. M.
    The structural and optical properties of Bridgman method grown Tl2InGaSe4 crystals have been investigated by means of room temperature x-ray diffraction, and transmittance and reflectance spectral analysis, respectively. The x-ray diffraction technique has shown that Tl2InGaSe4 is a single phase crystal of a monoclinic unit cell that exhibits the lattice parameters of a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees . The optical data have revealed an indirect allowed transition band gap of 1.86 eV. The room temperature refractive index, which was calculated from the reflectance and transmittance data, allowed the identification of the dispersion and oscillator energies, static dielectric constant and static refractive index as 28.51 and 3.45 eV, 9.26 and 3.04, respectively.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 12
    Effect of Au Nanosandwiching on the Structural, Optical and Dielectric Properties of the as Grown and Annealed Inse Thin Films
    (Elsevier Science Bv, 2017) Omareya, Olfat A.; Qasrawi, A. F.; Al Garni, S. E.
    In the current work, the structural, optical and dielectric properties of the InSe/Au/InSe nanosandwiched structures are investigated by means of X-ray diffraction and UV-visible light spectrophotometry techniques. The insertion of a 20 and 100 nm thick Au metal slabs between two InSe layers did not alter the amorphous nature of the as grown InSe films but decreased the energy band gap and the free carrier density. It also increased; the absorption ratio and the values of dielectric constant by similar to 3 times. The insertion of 100 nm Au layers as a nanosandwich enhanced the drift mobility (31.3 cm(2)/V s) and plasmon frequency (1.53 GHz) of the InSe films. On the other hand, upon annealing, a metal induced crystallization process is observed for the InSe/Au (100 nm)/InSe sandwiches. Particularly, while the samples sandwiched with a layer of 20 nm thickness hardly revealed hexagonal gamma -In2Se3 when annealed at 300 degrees C, those sandwiched with 100 nm Au slab, displayed well crystalline phase of hexagonal gamma -In2Se3 at annealing temperature of 200 degrees C. The further annealing at 300 degrees C, forced the appearing of the orthorhombic In4Se3 phase. Optically, the annealing of the InSe/Au(100 nm)/InSe at 200 degrees C improved the absorption ratio by similar to 9 times and decreased the energy band gap. The nanosandwiching technique of InSe seems to be promising for the engineering of the optical properties of the InSe photovoltaic material.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Design and characterization of (Al, C)/p-Ge/p-BN/C isotype resonant electronic devices
    (Wiley-v C H verlag Gmbh, 2015) Al Garni, S. E.; Qasrawi, A. F.
    In this work, a Ge/BN isotype electronic device that works as a selective microwave bandstop filter is designed and characterized. The interface is designed using a 50-m thick p-type BN on a 0.2-m thick p-type germanium thin film. The modeling of current-voltage characteristics of the Al/Ge/BN/C channel of the device revealed that the current is dominated by thermionic emission and by the tunneling of charged particles through energy barriers. The evaluation of the conduction parameters reflected a resonant circuit with a peak-to-valley current ratio of (PVCR) of 63 at a peak (V-p) and valley (V-v) voltages of 1.84 and 2.30V, respectively. The ac signal analysis of the Al/Ge/BN/C channel that was carried out in the frequency range of 1.0-3.0GHz displayed a bandstop filter properties with notch frequency (f(n)) of 2.04GHz and quality factor (Q) of 102. The replacement of the Al electrode by C through the C/Ge/BN/C channel caused the disappearance of the PVCR and shifted f(n) and Q to 2.70GHz and 100, respectively. The features of the Ge/BN device are promising as they indicate the applicability of these sensors in communication technology.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Electrical Characterization of Bi1.50-x< Varactors
    (World Scientific Publ Co Pte Ltd, 2014) Qasrawi, A. F.; Abu Muis, Khalil O.; Abu Al Rob, Osama H.; Mergen, A.
    The electrical properties of yttrium doped bismuth zinc niobium oxide (BZN) pyrochlore ceramics are explored by means of temperature dependent electrical conductivity dielectric constant and capacitance spectra in the frequency range of 0-3 GHz. It is observed that the doped BZN exhibit a conductivity type conversion from intrinsic to extrinsic as the doping content increased from 0.04 to 0.06. The thermal energy bandgap of the intrinsic type is 3.45 eV. The pyrochlore is observed to exhibit a dielectric breakdown at 395 K. In addition, a negative capacitance (NC) spectrum with main resonance peak position of 23.2 MHz is detected. The NC effect is ascribed to the increased polarization and the availability of more free carriers in the device. When the NC signal amplitude is attenuated in the range of 0-20 dBm at 50 MHz and 150 MHz, wide tunability is monitored. Such characteristics of the Y-doped BZN are attractive for using them to cancel the positive parasitic capacitance of electronic circuits. The canceling of parasitic capacitance improves the high frequency performance of filter inductors and reduces the common mode noise of the resonance signal.
  • Article
    Carrier Transport Properties of Ins Single Crystals
    (2002) Qasrawi,A.F.; Gasanly,N.M.
    The electrical resistivity and Hall effect of indium sulfide single crystals are measured in the temperature range from 25 to 350 K. The donor energy levels located at 500, 40 and 10 meV below the conduction band are identified from both measurements. The data analysis of the temperature-dependent Hall effect measurements revealed a carrier effective mass of 0.95 m0, a carrier compensation ratio of 0.9 and an acoustic deformation potential of 6 eV. The Hall mobility data are analyzed assuming the carrier scattering by acoustic and polar optical phonons, and ionized impurities.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 30
    Effects of Au Nanoslabs on the Performance of Cdo Thin Films Designed for Optoelectronic Applications
    (Elsevier, 2021) Alharbi, Seham Reef; Qasrawi, A. F.
    In this work, the effect of 50 nm thick gold nanosheets on the structural, morphological, optical and electrical properties of stacked layers of CdO are investigated. The insertion of Au nanoslabs decreased the lattice parameters of the cubic unit cells of CdO. It also decreased the microstrain, the defect density, the stacking fault percentage and increased the crystallite and grain sizes. Optically, the light absorbability is enhanced, the energy band gap is shrunk and the optical conductivity is increased. The optical conductivity parameters presented by scattering time, plasmon frequency, drift mobility and free carrier density are all engineered via participation of Au nanosheets. On the other hand, electrical measurements in the frequency domain of 0.01-1.80 GHz indicated that the Au nanosheets forced the capacitance spectra to exhibit negative values and increased the electrical conductivity in the studied frequency domain. The terahertz cutoff frequency is tuned in the range of 5.0-22.0 THz indicating the applicability of the CdO/Au/CdO (CAC) films as terahertz filters. The direct current electrical conductivity measurements have shown that while the CC samples exhibit nondegenerate extrinsic nature of conduction, the CAC samples displayed degenerate/nondegenerate transitions at 400 K. With the feature of negative capacitance that can be used for noise reduction and parasitic capacitance cancellation, the CAC films can be regarded as promising structure for multifunctional device applications.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    Band Offsets, Optical Conduction, and Microwave Band Filtering Characteristics of Γ-in2se3< Heterojunctions
    (Wiley-v C H verlag Gmbh, 2020) Qasrawi, Atef F.; Kmail, Reham R.
    Herein, the design and experimental characterization of gamma-In2Se3/CuO interfaces are considered. Thin films of gamma-In(2)Se(3)are coated with thin layers of CuO at room temperature. The heterojunction device is structurally, morphologically, and optically characterized. It is observed that the coating of CuO onto gamma-In(2)Se(3)engenders the formation of CuSe(2)at the ultrathin interface. The gamma-In2Se3/CuO heterojunctions exhibit maximum possible conduction and valence band offsets of values 0.47 and 0.96 eV, respectively. The dielectric spectra display two dielectric resonance peaks at 2.96 and 1.78 eV. In addition, analyses of the optical conductivity spectra reveal accurate drift mobility and plasmon frequency values of 31.31 cm(2) Vs(-1)and 1.5 GHz, respectively. The ability of the device to control the signal propagation at gigahertz level is experimentally tested by the impedance spectroscopy technique which proved the ability of the device to behave as bandpass filters of notch frequency of 1.49 GHz. The gamma-In2Se3/CuO heterojunction devices are also observed to display terahertz cutoff frequency values of approximate to 24 THz in the infrared (IR) range of incident photon energy and approximate to 193 THz in the ultraviolet light range. The nonlinear optical performance of the device nominates it for use as terahertz/gigahertz band filters.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 13
    Enhancement of Electrical Performance of Znse Thin Films Via Au Nanosandwiching
    (Sciendo, 2020) Qasrawi, A. F.; Taleb, Maram F.
    In this work, we report the effect of sandwiching of Au nanosheets on the structural and electrical properties of ZnSe thin films. The ZnSe films which are grown by the thermal evaporation technique onto glass and yttrium thin film substrates exhibit lattice deformation accompanied with lattice constant extension, grain size reduction and increased defect density upon Au nanosandwiching. The temperature dependent direct current conductivity analysis has shown that the 70 nm thick Au layers successfully increased the electrical conductivity by three orders of magnitude without causing degeneracy. On the other hand, the alternating current conductivity studies in the frequency domain of 10 MHz to 1800 MHz have shown that the alternating current conduction in ZnSe is dominated by both of quantum mechanical tunneling and correlated barrier hopping of electrons over the energy barriers formed at the grain boundaries. The Au nanosheets are observed to increase the density of localized states near Fermi level and reduce the average hopping energy by similar to 5 times. The conductivity, capacitance, impedance and reflection coefficient spectral analyses have shown that the nanosandwiching of Au between two layers of ZnSe makes the zinc selenide more appropriate for electronic applications and for applications which need microwave cavities.