Qasrawı, Atef Fayez Hasan

Loading...
Profile Picture
Name Variants
Qasrawi, Atef Fayez
Atef Fayez Hasan, Qasrawı
Qasrawı,A.F.H.
Qasrawi,A.F.H.
Q., Atef Fayez Hasan
Q.,Atef Fayez Hasan
Atef Fayez Hasan, Qasrawi
Qasrawi, Atef Fayez Hasan
A.F.H.Qasrawı
A.F.H.Qasrawi
A., Qasrawi
A.,Qasrawı
Qasrawı, Atef Fayez Hasan
Qasrawi, A. F.
Qasrawi,A.F.
Qasrawi, AF
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef Fayez
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef
Job Title
Doçent Doktor
Email Address
atef.qasrawi@atilim.edu.tr
Main Affiliation
Department of Electrical & Electronics Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

222

Articles

218

Views / Downloads

642/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

1887

Scopus Citation Count

1907

WoS h-index

21

Scopus h-index

21

Patents

0

Projects

0

WoS Citations per Publication

8.50

Scopus Citations per Publication

8.59

Open Access Source

17

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Journal of Electronic Materials15
Crystal Research and Technology13
physica status solidi (a)12
Journal of Alloys and Compounds11
Materials Science in Semiconductor Processing11
Current Page: 1 / 11

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Tungsten Doped Bi1.5zn0.92< Ceramics Designed as Radio/Microwave Band Pass/Reject Filters
    (Wiley, 2021) Qasrawi, Atef F.; Abdalghafour, Mays A.; Mergen, A.
    Herein, radiowave/microwave bandpass/reject filters are fabricated from the tungsten doped Bi1.5Zn0.92Nb1.5-6x/5WxO6.92 (W-BZN) pyrochlore ceramics. The W-BZN band filters are prepared by the solid state reaction technique and subjected to X-ray diffraction (XRD) and impedance spectroscopy analyses. It was shown that the W-BZN filters can display negative capacitance effects accompanied with resonance-antiresonance oscillations. The calculations of the reflection coefficient parameter (S-11), the return loss (L-r) and the voltage standing wave ratios (VSWR) in the frequency domain of 0.01 to 1.80 GHz, has shown that the W-BZN device can perform as microwave cavities at two notch frequency values of 0.44 and 1.53 GHz. W-BZN devices can also be nominated as noise reducers and radiowave/microwave signal receivers suitable for telecommunication technology.