Projeler / Projects
Permanent URI for this collectionhttps://ada.atilim.edu.tr/handle/123456789/26
Browse
Browsing Projeler / Projects by Subject "Alev Aerosol teknolojisi, nanomalzeme üretimi, süreç tasarımı, modelleme"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Research Project Sürekli Nanomalzeme Üretimi için Alev Aerosol Reaktör Tasarımı, Kontrolü ve SimülasyonuDue to its advantages compared to the wet chemistry methods, Flame Aerosol Technology is used to produce 90% (by volume) of the commercial nanomaterials continuously in a faster, cheaper way, and in a single step [1-2]. Evolved by combining combustion and aerosol technologies, a large span of materials from salts to metal oxides can be produced by this method [3]. In this technology, the most important issue is to produce the desired phase in the desired purity and morphology, and to understand the effect of the process parameters that control these properties. This is mostly because it takes place at very high temperature, where momentum, heat and mass transfer phenomena take place simultaneouly, as well as the combustion of fuel and the reaction of the metal salts in the flame. In order to apply this fast and high temperature process to the industrial scale, there is a need for well controlled laboratory experiments that allows to produce models which can be used to simulate the experimental results. In this proposal, a well controlled flame reactor will be designed, and the effect of the operation conditions on the final nano particle size, morphology and crystal phase will be investigated. The aim is to control the process conditions in a way that allows the tailor-made nanoparticles especially for heterogeneous catalytic applications. Computational Fluid Dynamics package FLUENT will be used along with a user defined “population balance” model in order to estimate the nanoparticle size, and compared with the experimental results. A new reactor will be designed and constructed with the help of the simulation, and metal oxides (e.g. TiO2, Pd/Co3O4 ) will be produced under different operating conditions. The nanoparticles produced will be characterized for their size and morphology, and the validity of the simulation model will be checked.