Pubmed
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14411/22
Browse
Browsing Pubmed by Journal "ACS Omega"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 6Dft Insights Into Noble Gold-Based Compound Li5aup2: Effect of Pressure on Physical Properties(Amer Chemical Soc, 2023) Surucu, Gokhan; Gencer, Aysenur; Surucu, Ozge; Ali, Md. Ashraf; Electrical-Electronics Engineering; 06. School Of Engineering; 01. Atılım UniversityIn this study, the Li5AuP2 compound is investigated in detail due to the unique chemical properties of gold that are different from other metals. Pressure is applied to the compound from 0 to 25 GPa to reveal its structural, mechanical, electronic, and dynamical properties using density functional theory (DFT). Within this pressure range, the compound is optimized with a tetragonal crystal structure, making it mechanically and dynam-ically stable above 18 GPa and resulting in an increment of bulk, shear, and Young's moduli of Li5AuP2. Pressure application, furthermore, changes the brittle or ductile nature of the compound. The anisotropic elastic and sound wave velocities are visualized in three dimensions. The thermal properties of the Li5AuP2 compound are obtained, including enthalpy, free energy, entropy x T, heat capacity, and Debye temperature. The electronic properties of the Li5AuP2 compound are studied using the Perdew-Burke-Ernzerhof (PBE) and Heyd-Scuseria-Ernzerhof (HSE) functionals. The pressure increment is found to result in higher band gap values. The Mulliken and bond overlap populations are also determined to reveal the chemical nature of this compound. The optical properties, such as dielectric functions, refractive index, and energy loss function of the Li5AuP2 compound, are established in detail. To our knowledge, this is the first attempt to study this compound in such detail, thus, making the results obtained here beneficial for future studies related to the chemistry of gold.Article Citation - WoS: 58Two-Dimensional Fluorinated Boron Sheets: Mechanical, Electronic, and Thermal Properties(Amer Chemical Soc, 2018) Pekoz, Rengin; Konuk, Mine; Kilic, M. Emin; Durgun, Engin; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım UniversityThe synthesis of atomically thin boron sheets on a silver substrate opened a new area in the field of two-dimensional systems. Similar to hydrogenated and halogenated graphene, the uniform coating of borophene with fluorine atoms can lead to new derivatives of borophene with novel properties. In this respect, we explore the possible structures of fluorinated borophene for varying levels of coverage (BnF) by using first-principles methods. Following the structural optimizations, phonon spectrum analysis and ab initio molecular dynamics simulations are performed to reveal the stability of the obtained structures. Our results indicate that while fully fluorinated borophene (BF) cannot be obtained, stable configurations with lower coverage levels (B4F and B2F) can be attained. Unveiling the stable structures, we explore the mechanical, electronic, and thermal properties of (BnF). Fluorination significantly alters the mechanical properties of the system, and remarkable results, including direction-dependent variation of Young's modulus and a switch from a negative to positive Poisson's ratio, are obtained. However, the metallic character is preserved for low coverage levels, and metal to semiconductor transition is obtained for B2F. The heat capacity at a low temperature increases with an increasing F atom amount but converges to the same limiting value at high temperatures. The enhanced stability and unique properties of fluorinated borophene make it a promising material for various high-technology applications in reduced dimensions.
