Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Entities
Browse GCRIS
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Wang, Heping"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    The Convergence of q-bernstein Polynomials (0 < q < 1) and Limit q-bernstein Operators in Complex Domains
    (Rocky Mt Math Consortium, 2009) Ostrovska, Sofiya; Wang, Heping
    Due to the fact that the convergence properties of q-Bernstein polynomials are not similar to those in the classical case q = 1, their study has become an area of intensive research with a wide scope of open problems and unexpected results. The present paper is focused on the convergence of q-Bernstein polynomials, 0 < q < 1, and related linear operators in complex domains. An analogue of the classical result on the simultaneous approximation is presented. The approximation of analytic functions With the help of the limit q-Bernstein operator is studied.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 10
    The Norm Estimates for The q-bernstein Operator in The Case q > 1
    (Amer Mathematical Soc, 2010) Wang, Heping; Ostrovska, Sofiya
    The q-Bernstein basis with 0 < q < 1 emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on [0, 1]. In the case q > 1, the behavior of the q-Bernstein basic polynomials on [0, 1] combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present norm estimates in C[0, 1] for the q-Bernstein basic polynomials and the q-Bernstein operator B-n,B-q in the case q > 1. While for 0 < q <= 1, parallel to B-n,B-q parallel to = 1 for all n is an element of N, in the case q > 1, the norm parallel to B-n,B-q parallel to increases rather rapidly as n -> infinity. We prove here that parallel to B-n,B-q parallel to similar to C(q)q(n(n-1)/2)/n, n -> infinity with C-q = 2 (q(-2); q(-2))(infinity)/e. Such a fast growth of norms provides an explanation for the unpredictable behavior of q-Bernstein polynomials (q > 1) with respect to convergence.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback