Browsing by Author "Tuzun, Imre"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Citation - WoS: 2Citation - Scopus: 2Nanoremediation of Toxic Dyes Using a Bacterial Consortium Immobilized on Cellulose Acetate Nanofiber Mats(Wiley, 2024) Erkoc, Esra; Tuzun, Imre; Korkmaz, Filiz; San Keskin, Nalan Oya; Kocberber Kilic, NurStenotrophomonas maltophilia and Ochrobactrum sp. demonstrated the highest rates of dye bioremediation. The trials were performed at pH 8, which resulted in the highest bioremediation rate of 64.6% in media containing 21.2 mg L-1 dye. As the dye concentration increased, the pollutant removal decreased, with the maximum bioremoval rate of 70.3%. The removal capacity was increased with an increase in biomass concentration; the highest yield of 91.3% was obtained in media containing 14.2 mg L-1 dye and 12% (v/v) biomass. In nanoremediation studies, the bacterial consortium was immobilized on cellulose acetate nanofiber mats (CA-NFM). Scanning electron microscopic micrographs showed that bead-free nanofiber mats were effective in immobilizing bacterial cells. Moreover, nanofiber structures were capable of supporting exopolysaccharides formation, as confirmed by Fourier transform & imath;nfrared spectroscopy. The bacterial consortium immobilized on CA-NFM showed a maximum bioremoval rate of 56.5%. Reusability tests demonstrated that the consortium immobilized CA-NFM could be used at least five times. Furthermore, after leaving the mat for 1 month at 4 degrees C, it was still usable, and the removal efficiency was found to be 45.4%. Based on our findings, bacteria immobilized on CA-NFM have the potential to be used as highly effective and versatile nanobiotechnological biological sorbents in the treatment of wastewater containing dyes.
