1. Home
  2. Browse by Author

Browsing by Author "Tuerksen, I. Burhan"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 19
    Citation - Scopus: 24
    Increasing Accuracy of Two-Class Pattern Recognition With Enhanced Fuzzy Functions
    (Pergamon-elsevier Science Ltd, 2009) Celikyilmaz, Asli; Tuerksen, I. Burhan; Aktas, Ramazan; Doganay, M. Mete; Ceylan, N. Basak; Tourism Management; 05. School of Business; 01. Atılım University
    In building an approximate fuzzy classifier system, significant effort is laid oil estimation and fine tuning of fuzzy sets. However, in such systems little thought is given to the way in which membership functions are combined within fuzzy rules. In this paper, a robust method, improved fuzzy classifier functions (IFCF) design is proposed for two-class pattern recognition problems. A supervised hybrid improved fuzzy Clustering for classification (IFC-C) algorithm is implemented for structure identification. IFC-C algorithm is based oil it dual optimization method, which yields simultaneous estimates of the parameters of (c-classification functions together with fuzzy c partitioning of dataset based oil a distance measure. The merit of novel IFCF is that the information oil natural grouping of data samples i.e., the membership values, are utilized as additional predictors of each fuzzy classifier function to improve accuracy of system model. Improved fuzzy classifier functions are approximated using statistical and soft computing approaches. A new semi-non-parametric inference mechanism is implemented for reasoning. The experimental results Of the new modeling approach indicate that the new IFCF is it promising method for two-class pattern recognition problems. (c) 2007 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 8
    A New Classifier Design With Fuzzy Functions
    (Springer-verlag Berlin, 2007) Celikytlmaz, Ash; Tuerksen, I. Burhan; Aktas, Ramazan; Doganay, M. Mete; Ceylan, N. Basak; Tourism Management; 05. School of Business; 01. Atılım University
    This paper presents a new fuzzy classifier design, which constructs one classifier for each fuzzy partition of a given system. The new approach, namely Fuzzy Classifier Functions (FCF), is an adaptation of our generic design on Fuzzy Functions to classification problems. This approach couples any fuzzy clustering algorithm with any classification method, in a unique way. The presented model derives fuzzy functions (rules) from data to classify patterns into number of classes. Fuzzy c-means clustering is used to capture hidden fuzzy patterns and a linear or a non-linear classifier function is used to build one classifier model for each pattern identified. The performance of each classifier is enhanced by using corresponding membership values of the data vectors as additional input variables. FCF is proposed as an alternate representation and reasoning schema to fuzzy rule base classifiers. The proposed method is evaluated by the comparison of experiments with the standard classifier methods using cross validation on test patterns.