Browsing by Author "Toppare, L."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 12Citation - Scopus: 13Analysis of Temperature-Dependent Forward and Leakage Conduction Mechanisms in Organic Thin Film Heterojunction Diode With Fluorine-Based Pcbm Blend(Springer, 2020) Yildiz, D. E.; Gullu, H. H.; Toppare, L.; Cirpan, A.; Department of Electrical & Electronics EngineeringThe forward and reversed biased current-voltage behaviors of the organic diode were detailed in a wide range of temperatures. In this diode, a donor-acceptor-conjugated copolymer system was constructed with poly((9,9-dioctylfluorene)-2,7-diyl-(2-dodecyl-benzo[1,2,3]triazole)) as a partner of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Two-order of magnitude rectification ratio was achieved, and the temperature-dependent values of saturation current, zero-bias barrier height, and ideality factor were extracted according to the thermionic emission model. The temperature responses of these diode parameters showed an existence of inhomogeneity in the barrier height formation. As a result, the observed non-ideal behavior was explained by Gaussian distribution of barrier height where low-barrier regions are effective in the forward biased conduction mechanism at low temperatures. Together with this analysis, series resistances were evaluated using Cheung's functions and also density of interface states were investigated. On the other hand, reverse biased current flow was found under the dominant effect of Poole-Frenkel effects associated with these interfacial traps. The reverse current conduction mechanism was detailed by calculating characteristic field-lowering coefficients and barrier height values in the emission process from the trapped state in the range of temperatures of interest.Article Citation - WoS: 18Citation - Scopus: 18Electrical Characteristics of Organic Heterojunction With an Alternating Benzotriazole and Fluorene Containing Copolymer(Springer, 2020) Gullu, H. H.; Yildiz, D. E.; Toppare, L.; Cirpan, A.; Department of Electrical & Electronics EngineeringThe current-voltage (I - V) and capacitance-voltage (C - V) characteristics of the organic heterojunction diode were investigated in a wide temperature range from 80 to 320 K and frequency range from 10 kHz to 1 MHz, respectively. Alternative to the copolymer partner poly(3-hexylthiophene) (P3HT) to [6,6]phenyl-C61-butyric acid methyl ester (PCBM), poly((9,9-dioctylfluorene)-2,7diyl-(4,7-bis(thien-2-yl)-2-dodecyl-benzo[1,2,3]triazole)) (named as copolymer in this work) was adapted to the bulk-heterojunction layer in the organic diode. Together with the use of Lif/Al bilayer electrode, the diode was fabricated as in the form of Al/LiF/copolymer:PCBM/PEDOT:PSS/ITO/glass. Under the applied bias voltage, this organic-based diode shows two- orders of magnitude rectifying behavior. According to thermionic emission (TE) model, the diode parameters such as saturation current, barrier height and ideality factor were determined and parasitic resistances were also extracted from the conventional ohmic relation. As to the temperature dependency of the diode parameters and their response to the temperature variation, barrier inhomogeneity, surface state and series resistance effects were found in dominant behavior on the current flow. The conduction mechanism was modeled by assuming low-barrier patches around the main barrier that supports TE at low temperatures and their distribution was expressed by a Gaussian function. In addition, series resistance values were detailed depending on temperature using Cheung's model. C - V analysis was performed to evaluate the distribution of surface states at the interface as a function of frequency. Based on the C - V plots, the effects of charges at these traps were observed especially at low frequencies. Additionally, from these results, Fermi level, surface potential and donor concentration values were evaluated in a wide frequency range.
