Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Sengoz, Burak"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 7
    Estimation of Polypropylene Concentration of Modified Bitumen Images by Using K-Nn and Svm Classifiers
    (Asce-amer Soc Civil Engineers, 2015) Tapkin, Serkan; Sengoz, Burak; Sengul, Gokhan; Topal, Ali; Ozcelik, Erol
    The goal of this study is to design an expert system that automatically classifies the microscopic images of polypropylene fiber (PPF) modified bitumen including seven different contents of fibers. Optical microscopy was used to capture the images from thin films of polypropylene fiber modified bitumen samples at a magnification scale of 100 x. A total of 313 images were pre-processed, and features were extracted and selected by the exhaustive search method. The k-nearest neighbor (k-NN) and multiclass support vector machine (SVM) classifiers were applied to quantify the representation capacity. The k-NN and multiclass SVM classifiers reached an accuracy rate of 87% and 86%, respectively. The results suggest that the proposed expert system can successfully estimate the concentration of PPF in bitumen images with good generalization characteristics. (C) 2014 American Society of Civil Engineers.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback