Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Sözen, Nergiz"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Çalışma belleği kapasitesinin karmaşık yazılım modellerini anlamaya etkisinin araştırılması
    (2021) Sözen, Nergiz; Say, Bilge; Kılıç, Özkan
    Çalışma belleği kapasitesi, problem çözme, okuma, anlama, öğrenme ve dil yeteneği geliştirme gibi bilişsel olarak zorlayıcı konulardaki performansa olan etkisi açısından literatürde önemli bir konu olarak ele alınmaktadır. Çalışma belleği kapasitesini geliştirmek için kullanılan çalışma belleği egzersizlerinin bu bilişsel olarak zorlayıcı konularda kişinin performansına pozitif etki sağladığını gösteren pek çok çalışma mevcuttur. Çalışma belleği egzersizleri ile kazanılan yeteneğin, bu egzersizden tamamen farklı ama yine bilişsel olarak zorlayıcı ve çalışma belleğinin aktif olarak kullanıldığı yeteneklere transfer edilebildiği gözlemlenmiştir. Pek çok konuda ve alanda araştırılan çalışma belleği kapasitesinin etkilerinin, yazılım mühendisliği alanında çok kullanılan karmaşık modellerin anlaşılırlığına etkisi daha önce hiç çalışılmamış, literatürde bulunmayan bir konu olduğu saptanmıştır. Model güdümlü yazılımın popülerlik kazandığı son dönemde, bu karmaşık modellerin anlaşılırlığı konusu da önem arz etmeye başlamıştır. Karmaşık modellerin anlaşılırlığı da yüksek bilişsel beceri gerektiren bir konudur. Daha sonra uygulamaya geçirilecek ve kodlanacak bir sistemin mimarisini ve işlevini anlamak, sistemin nasıl çalıştığını, verilerin nasıl tutulduğunu, sistemle kimlerin nasıl etkileşim içerisinde olduğunu ve buna dair diğer konuları görsel olarak ifade eden modelleri tam ve doğru olarak anlamak önem arz etmektedir. Bunun yanı sıra tüm iştirakçilerin ve özellikle acemi model tasarımcılarının karmaşık modelleri anlaması, yazılım sürecinin başarılı bir şekilde işlemesi için çok önemlidir. Karmaşık modellerin anlaşılırlığının çeşitli etkenlere bağlı olduğu tartışılmaktadır. Literatürde bu etkenler; modele özgü ve kişiye özgü faktörler olmak üzere iki grup altında toplanmıştır. Bu tezde, kişiye özgü faktörlerden olan çalışma belleği kapasitesinin iş süreci yönetim modellerine ve veri modellerine olan etkisi araştırılmaktadır. Acemi model tasarımcılarının çalışma belleği kapasitesi ile karmaşık model anlaşılırlığı arasındaki ilişkiyi araştırmak için ve buna ek olarak uygun bir çalışma belleği egzersizinin karmaşık model anlaşılırlığına etki edip etmeyeceğini araştırmak için farklı bilgisayar bilimi lisans öğrencileri ile iki deney yapılmıştır. İlk yapılan deneydeki model anlaşılırlığı ve çalışma belleği kapasitesi verilerine ek olarak, bulguları pekiştirmek ve daha iyi yorumlayabilmek için, göz takibi metodu kullanılarak acemi model tasarımcılarının iş süreci modeli anlaşılırlık testi sırasındaki göz hareketleri kaydedilmiş ve çalışma belleği kapasitesi ile model anlaşılırlığı hakkında çeşitli metrikler hesaplanmıştır. İlk deney sonuçlarının detaylı analizi sonucunda elde edilen bulgular gösteriyor ki karmaşık iş süreci modellerinin anlaşılırlığı kişinin çalışma belleği kapasitesi ile ilişkilidir. Göz verileri incelenerek hesaplanan metriklerin analizi sonucunda elde edilen bulgular, çalışma belleği kapasitesi yüksek olan model tasarımcılarının model anlaşılırlık testinde problemleri daha etkili şekilde çözdüklerine işaret etmektedir. Benzer şekilde, çalışma belleği kapasitesi yüksek olan model tasarımcılarının sorulara doğru yanıt vermek için daha motive ve ısrarcı olduğu ortaya çıkmıştır. Genel olarak bakıldığında yüksek çalışma belleği kapasitesi olan model tasarımcılarının model anlaşılırlık test skorlarının ve performanslarının çalışma belleği kapasitesi düşük olanlara kıyasla daha yüksek olduğu gözlemlenmiştir. Çalışma belleği kapasitesini arttırmak için tasarlanmış 'ikili n-geri (İng. dual nback)' egzersizinin sonucunda gelişen performansın karmaşık model anlaşılırlığına aktarılıp aktarılamadığını tespit etmek amacıyla ikinci deney yapılmıştır. Bu deneyde aktif kontrol grubu, literatürde bir plasebo egzersiz olarak varsayılan 'görsel arama (İng. visual search)' egzersizini uygularken, deney grubu ise ikili n-geri çalışma belleği egzersizini 7 hafta boyunca uygulamıştır. 7 hafta, 20 oturum süren egzersizlerden hem önce hem de sonra deney katılımcılarının çalışma belleği kapasitesi ve model anlaşılırlık testindeki performansları ölçülmüştür. Deneyde elde edilen verilerin analizi sonucunda elde edilen bulgular göstermiştir ki, ikili n-geri egzersizini 7 hafta boyunca uygulamış model tasarımcılarının karmaşık veri modeli anlaşılırlığı testinin ortalama skorları, görsel arama testi uygulamış olanlara göre daha yüksektir. Grup içi karşılaştırma sonucunda ise, ikili n-geri egzersizini uygulamış olan deney grubunun model anlaşılırlık testi skorları, deneyden önce yapılan teste kıyasla yükselmiş, kontrol grubunda ise egzersiz sonucunda hiçbir artış gözlemlenmemiştir. Her ne kadar karmaşık model anlaşılırlığı skorları üzerinde çalışma belleği kapasitesinin etkisi görülse de çalışma belleği kapasitesi testinin model anlaşılırlık yeteneğine transfer edilebileceğine ve bu yeteneği istatistiksel olarak anlamlı bir şekilde arttıracağına dair kesin bir kanıt bulunamamıştır. Bu orijinal tez çalışması, çalışma belleği kapasitesinin karmaşık model anlaşılırlığına olan etkisi ile ilgili ilk bulguları sunması açısından literatüre katkı sağlamaktadır.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback