Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ranjbar Aghjehkohal, Amin"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    4D-Printed Continuous Fiber-Reinforced PLA/TPU Auxetic Composites: Mechanical Performance, Energy Absorption, Shape Recovery, and Reusability Evaluation
    (SpringerNature, 2025) Alkan, Atakan; Ranjbar Aghjehkohal, Amin; Fallah, Ali; Koc, Bahattin
    This study explores the mechanical performance, energy absorption, shape recovery, and reusability of 4D-printed continuous carbon fiber-reinforced auxetic composite structures based on PLA/TPU blends, designed for load-bearing applications. PLA-TPU mixtures with different TPU content were developed to optimize the balance between flexibility and strength, with carbon fibers incorporated to enhance the mechanical properties of the resulting composites. Thermo-mechanical characterization of the blends was conducted, followed by a detailed evaluation of the structures' mechanical behavior and energy absorption capacity under room temperature conditions, simulating practical industrial scenarios. The shape recovery performance of these composite structures was also investigated. To assess reusability, the programming-recovery cycle was repeated five times, analyzing the retention of mechanical properties and shape recovery over multiple cycles to determine durability. Results revealed that TPU integration provided sufficient flexibility for cold programming, while carbon fiber reinforcement significantly enhanced stiffness and strength. The 4D-printed composites exhibited consistent shape recovery and maintained mechanical integrity after five cycles, confirming their reusability. These findings demonstrate the potential of 4D-printed PLA/TPU-based carbon fiber-reinforced composites as smart, durable materials for load-bearing applications in industries such as biomedical engineering, automotive, and aerospace.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback