Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Entities
Browse GCRIS
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Ozdemirel, Ceren"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 13
    Citation - Scopus: 12
    Effect of Aging Treatment on the Microstructure, Cracking Type and Crystallographic Texture of In939 Fabricated by Powder Bed Fusion-Laser Beam
    (Elsevier, 2024) Ozer, Seren; Dogu, Merve Nur; Ozdemirel, Ceren; Bilgin, Guney Mert; Gunes, Mert; Davut, Kemal; Brabazon, Dermot
    This study aimed to provide a comprehensive understanding of how aging treatments (namely, HT1 and HT2) affect the microstructure, cracking behavior, and crystallographic texture of IN939 fabricated by powder bed fusion-laser beam (PBF-LB) method. Although both aged samples demonstrated similar grain structure and recrystallization behavior according to the electron backscatter diffraction (EBSD) analysis, as well as the precipitation of bimodal gamma ' phase and MC- and M23C6-type carbides, notable differences were observed in the size and morphology, particularly the gamma ' phase. The HT1 sample displayed coarsened primary gamma ' phase, with sizes reaching up to 2 mu m and exhibiting varied morphologies, including irregular and cuboidal shapes. Additionally, this treatment led to the formation of some gamma '-gamma eutectic regions and plate-like eta phase, along with the decomposition of MC-type carbides into M23C6-type carbides. In contrast, the HT2 sample displayed uniformly distributed spherical primary gamma ' phase with sizes ranging from 70 to 120 nm, accompanied by very fine secondary gamma ' phase. Furthermore, it was found that changes in both aged sample microstructures could result in the formation of strain-age cracks due to the gamma ' phase formation and liquation cracks due to the partial remelting of lower melting point phases. The findings also revealed that with the application of aging treatments, the hardness of the as-fabricated sample (339.8 +/- 3.4 HV) increased to 440.2 +/- 5.6 HV and 508.1 +/- 4.8 HV for the heat treatment of HT1 and HT2, respectively.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback