Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Golinskii, L"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 7
    Citation - Scopus: 9
    Cesaro Asymptotics for Orthogonal Polynomials on the Unit Circle and Classes of Measures
    (Academic Press inc Elsevier Science, 2002) Golinskii, L; Khrushchev, S
    The convergence in L-2(T) of the even approximants of the Wall continued fractions is extended to the Cesaro-Nevai class CN, which is defined as the class of probability measures sigma with lim(n-->infinity) 1/n Sigma(k=0)(n-1) \a(k)\ = 0, (a(n))(ngreater than or equal to0) being the Geronimus parameters of sigma. We show that CN contains universal measures, that is, probability measures for which the sequence (\phi(n)\(2) dsigma)(ngreater than or equal to0) is dense in the set of all probability measures equipped with the weak-* topology. We also consider the "opposite" Szego class which consists of measures with Sigma(n=0)(infinity) (1-\a(n)\(2))(1/2) < infinity and describe it in terms of Hessenberg matrices. (C) 2002 Elsevier Science (USA).
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback