Browsing by Author "Gökçay, Erhan"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Conference Object Citation Count: 1Effect of secret image transformation on the steganography process(Institute of Electrical and Electronics Engineers Inc., 2017) Buke,M.; Tora,H.; Gokcay,E.; Airframe and Powerplant Maintenance; Software EngineeringSteganography is the art of hiding information in something else. It is favorable over encryption because encryption only hides the meaning of the information; whereas steganography hides the existence of the information. The existence of a hidden image decreases Peak Signal to Noise Ratio (PSNR) and increases Mean Square Error (MSE) values of the stego image. We propose an approach to improve PSNR and MSE values in stego images. In this method a transformation is applied to the secret image, concealed within another image, before embedding into the cover image. The effect of the transformation is tested with Least Significant Bit (LSB) insertion and Discrete Cosine Transformation (DCT) techniques. MSE and PSNR are calculated for both techniques with and without transformation. Results show a better MSE and PSNR values when a transformation is applied for LSB technique but no significant difference was shown in DCT technique. © 2017 IEEE.Conference Object Citation Count: 0Effect of Secret Image Transformation on the Steganography Process(Ieee, 2017) Buker, Mohamed; Tora, Hakan; Gokcay, Erhan; Software Engineering; Airframe and Powerplant MaintenanceSteganography is the art of hiding information in something else. It is favorable over encryption because encryption only hides the meaning of the information; whereas steganography hides the existence of the information. The existence of a hidden image decreases Peak Signal to Noise Ratio (PSNR) and increases Mean Square Error (MSE) values of the stego image. We propose an approach to improve PSNR and MSE values in stego images. In this method a transformation is applied to the secret image, concealed within another image, before embedding into the cover image. The effect of the transformation is tested with Least Significant Bit (LSB) insertion and Discrete Cosine Transformation (DCT) techniques. MSE and PSNR are calculated for both techniques with and without transformation. Results show a better MSE and PSNR values when a transformation is applied for LSB technique but no significant difference was shown in DCT technique.Article Citation Count: 7A generalized Arnold's Cat Map transformation for image scrambling(Springer, 2022) Tora, Hakan; Gokcay, Erhan; Turan, Mehmet; Buker, Mohamed; Mathematics; Software Engineering; Airframe and Powerplant MaintenanceThis study presents a new approach to generate the transformation matrix for Arnold's Cat Map (ACM). Matrices of standard and modified ACM are well known by many users. Since the structure of the possible matrices is known, one can easily select one of them and use it to recover the image with several trials. However, the proposed method generates a larger set of transform matrices. Thus, one will have difficulty in estimating the transform matrix used for scrambling. There is no fixed structure for our matrix as in standard or modified ACM, making it much harder for the transform matrix to be discovered. It is possible to use different type, order and number of operations to generate the transform matrix. The quality of the shuffling process and the strength against brute-force attacks of the proposed method is tested on several benchmark images.Doctoral Thesis Görüntü füzyonu kullanarak tıbbi görüntülerden gürültü arındırma(2020) Sıddık, Omer Subhı Sıddık; Gökçay, Erhan; Software EngineeringGörüntü füzyonu birçok erişilebilir görüntüden birinci kalite görüntü alma sistemidir. En önemli yöntem yüksek geçirim filtreleme yöntemidir. Daha sonraki yöntemler Dual-Tree Complex DWT (DTCWT), tek-tip rasyonel filtre bankası ve piramit teknikleri üzerine kuruludur. Bu tez çalışması, sefalometrik röntgen görüntülerinde Gaussian ve Poisson gürültü arındırma yöntemleri üzerinden görüntü birleştirme konusunu ele almaktadır. Görüntünün iletilmesi ve toplanması esnasında hedefsiz haberleşme ve ekipman yetersizliği gibi nedenlerden ötürü dijital görüntü uygulamaları hata vermektedir. Korumasız iletim nedeni ile zarar görmüş görüntüler farklı sensörler aracılığı ile tespit edilir. Gürültü arındırma işlemi sonrasında elde edilen görüntüler, yüksek kalite çözünürlüğe sahip tek bir görüntü elde etmek için birbirleri ile birleştirilirler. Tek bir nihai görüntü elde etmek için iki veya daha fazla görüntünün birleştirilmesi işlemine görüntü füzyonu denilir. Bu tezde farklı görüntü füzyon algoritmaları ve (Gaussian ve Poisson) gürültü filtreleri kullanıldı. 4. bölümde yer alan metodoloji ve sonuç kısmı yirmi bir yöntemden oluşmaktadır. Bu yöntemlerden ilk on üç tanesi bu tez çalışması ile alakalı olan görüntü güçlendirme yöntemlerini içermektedir ve yine bu yöntemler tarafımızca önerilen gürültü arındırma işleminde kullanılmıştır. Bu yöntemler şu şekilde sunulmuştur: Görüntü gürültü arındırma işlemimde ilk sekiz yöntem eşikleme ve küçültme yöntemleri kullanılarak sunulmuş, sonrasında iki adet filtre yöntemi görüntü filtreleme de sunulmuş ve son olarak da üç yöntem füzyon yöntemlerinde kullanılmıştır. Son sekiz yöntem çok sayıda aşamadan oluşmaktadır ve bu aşamaların her biri önceden test edilmiş olan en iyi sonuçlar ele alınarak gerçekleştirilmiştir. Bu tez çalışmasında, 'Dual-Tree Complex Discrete Wavelet Transform' olarak adlandırılan çok sensörlü dönüşüm bazlı füzyon teknolojileri ile birlikte elde edilen 400 sefalometrik röntgen görüntülerini kullanan farklı yöntemler kullanılmıştır. Sinyal, 'Dual-Tree Complex Discrete Wavelet Transform' kullanılarak farklı frekans alt bantlarına ayrıştırılmıştır. Düşük frekanslı alt bantlardan gürültüyü arındırmak için iki yanlı filtreleme yöntemi kullanılmış, yüksek frekanslı alt bantlar için ise 'Bivariate Shrinkage' dalgacık eşiklemesi kullanılmıştır. Gürültüden arındırılmış alt bantlar, dalgacık dönüşüm füzyon kuralı esas alınarak birleştirilmiştir. Test sonuçları bu birleştirme algoritmalarının yüksek kaliteli bir görüntü ortaya çıkardığını göstermektedir.Conference Object Citation Count: 0An IoT Application for Locating Victims Aftermath of an Earthquake(Ieee, 2017) Karakaya, Murat; Sengul, Gokhan; Gokcay, Erhan; Software Engineering; Computer EngineeringThis paper presents an Internet of Things (IoT) framework which is specially designed for assisting the research and rescue operations targeted to collapsed buildings aftermath of an earthquake. In general, an IoT network is used to collect and process data from different sources called things. According to the collected data, an IoT system can actuate different mechanisms to react the environment. In the problem at hand, we exploit the IoT capabilities to collect the data about the victims before the building collapses and when it falls down the collected data is processed to generate useful reports which will direct the search and rescue efforts. The proposed framework is tested by a pilot implementation with some simplifications. The initial results and experiences are promising. During the pilot implementation, we observed some issues which are addressed in the proposed IoT framework properly.Conference Object Citation Count: 1An IoT application for locating victims aftermath of an earthquake(Institute of Electrical and Electronics Engineers Inc., 2017) Karakaya,M.; Şengül,G.; Gökçay,E.; Software Engineering; Computer EngineeringThis paper presents an Internet of Things (IoT) framework which is specially designed for assisting the research and rescue operations targeted to collapsed buildings aftermath of an earthquake. In general, an IoT network is used to collect and process data from different sources called things. According to the collected data, an IoT system can actuate different mechanisms to react the environment. In the problem at hand, we exploit the IoT capabilities to collect the data about the victims before the building collapses and when it falls down the collected data is processed to generate useful reports which will direct the search and rescue efforts. The proposed framework is tested by a pilot implementation with some simplifications. The initial results and experiences are promising. During the pilot implementation, we observed some issues which are addressed in the proposed IoT framework properly. © 2017 IEEE.Master Thesis Kademeli evrişimli sinir ağlarında uyarlanabilir ağ seçimi tekniği(2023) Önal, Ekin Sarp; Gökçay, Erhan; Software EngineeringDinamik sinir ağı, derin öğrenmede önemli bir araştırma alanıdır. Sunulan tez, statik modellerin verimliliğini ve uyarlanabilirliğini artırmak için iki veya daha fazla sinir ağını artan derinlikte bağlamak için bir yönlendirici kullanan kademeli sinir ağına odaklanmaktadır. Bu tezde, kademeli derin sinir ağlarında ağ seçimi için parametresiz bir teknik önerdik. Bu teknik, sığ ağların da birçok örneği doğru bir şekilde sınıflandırabilmesi gerçeğinden yararlanarak, eğitim ve çıkarım için gereken hesaplama süresini azaltmayı amaçlamaktadır. Kademeli sinir ağı, softmax marjı ve klasik LeNet modelinin kısa bir açıklamasını takiben, yeni bir kademeli sinir ağı algoritması tanıtılmaktadır. Önerilen model; MNIST, EMNIST ve Fashion-MNIST veri kümelerinde etkinlik ve performans açısından LeNet ile karşılaştırılmaktadır. Sayısal sonuçlar, önerilen teknikle referans modelinin verimliliğinin büyük ölçüde arttığını ve doğruluktan ödün vermeden geliştirildiğini göstermektedir.Article Citation Count: 3A novel data encryption method using an interlaced chaotic transform(Pergamon-elsevier Science Ltd, 2024) Gokcay, Erhan; Tora, Hakan; Software Engineering; Airframe and Powerplant MaintenanceWe present a novel data encryption approach that utilizes a cascaded chaotic map application. The chaotic map used in both permutation and diffusion is Arnold's Cat Map (ACM), where the transformation is periodic and the encrypted data can be recovered. The original format of ACM is a two-dimensional mapping, and therefore it is suitable to randomize the pixel locations in an image. Since the values of pixels stay intact during the transformation, the process cannot encrypt an image, and known-text attacks can be used to get back the transformation matrix. The proposed approach uses ACM to shuffle the positions and values of two-dimensional data in an interlaced and nested process. This combination extends the period of the transformation, which is significantly longer than the period of the initial transformation. Furthermore, the nested process's possible combinations vastly expand the key space. At the same time, the interlaced pixel and value transformation makes the encryption highly resistant to any known-text attacks. The encrypted data passes all random-data tests proposed by the National Institute of Standards and Technology. Any type of data, including ASCII text, can be encrypted so long as it can be rearranged into a two-dimensional format.Article Citation Count: 0An unrestricted Arnold's cat map transformation(Springer, 2024) Turan, Mehmet; Goekcay, Erhan; Tora, Hakan; Software Engineering; Mathematics; Airframe and Powerplant MaintenanceThe Arnold's Cat Map (ACM) is one of the chaotic transformations, which is utilized by numerous scrambling and encryption algorithms in Information Security. Traditionally, the ACM is used in image scrambling whereby repeated application of the ACM matrix, any image can be scrambled. The transformation obtained by the ACM matrix is periodic; therefore, the original image can be reconstructed using the scrambled image whenever the elements of the matrix, hence the key, is known. The transformation matrices in all the chaotic maps employing ACM has limitations on the choice of the free parameters which generally require the area-preserving property of the matrix used in transformation, that is, the determinant of the transformation matrix to be +/- 1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1.$$\end{document} This reduces the number of possible set of keys which leads to discovering the ACM matrix in encryption algorithms using the brute-force method. Additionally, the period obtained is small which also causes the faster discovery of the original image by repeated application of the matrix. These two parameters are important in a brute-force attack to find out the original image from a scrambled one. The objective of the present study is to increase the key space of the ACM matrix, hence increase the security of the scrambling process and make a brute-force attack more difficult. It is proved mathematically that area-preserving property of the traditional matrix is not required for the matrix to be used in scrambling process. Removing the restriction enlarges the maximum possible key space and, in many cases, increases the period as well. Additionally, it is supplied experimentally that, in scrambling images, the new ACM matrix is equivalent or better compared to the traditional one with longer periods. Consequently, the encryption techniques with ACM become more robust compared to the traditional ones. The new ACM matrix is compatible with all algorithms that utilized the original matrix. In this novel contribution, we proved that the traditional enforcement of the determinant of the ACM matrix to be one is redundant and can be removed.Master Thesis Videoda nesne takibi için hibrit metot geliştirmesi(2019) Taşan, Hakan; Gökçay, Erhan; Software EngineeringVideodaki nesnenin algılanması ve takibi, bilgisayarla görü ve görüntü işlemede önemli bir araştırma alanı olarak ortaya çıkmıştır. Nesne takibi için birçok algoritma geliştirilmiştir ve her algoritmanın başarılı veya başarısız olduğu bazı koşullar vardır. Bu tezde, videoda nesne takibi amacıyla üç nesne tespiti ve takibi algoritmasından oluşan güçlü bir karma sistem önerilmiştir. Bunlar şablon eşleştirme, renk histogramı ve özellik çıkarımına dayalı SURF algoritmalarıdır. Bu algoritmaları hibrit sistemde uygulamak için OpenCV kütüphanesi kullanılmıştır. Algoritmalar uygulanırken; gaussian blur, renk uzayı dönüşümleri, Otsu eşiklemesi, kayan pencere yaklaşımı, özellik çıkarımı ve betimlemesi, ve uzaklık hesaplamaları gibi farklı teknikler uygulanmıştır. Videodaki herhangi bir nesne seçilebilir ve seçilen nesne videonun geri kalanında takip edilebilir. Nesnenin tıkanmasını önlemek ve sahnenin ani hareketinin etkilerini en aza indirmek için, videonun her beşinci karesinde seçilen nesnenin yenilenmesi yaklaşımı kullanılır. Hibrit sistemin amacı, video karelerindeki takip edilecek nesnenin tespit oranını iyileştirmektir. Tüm performans testleri NTU-VOI 2018, Visual Tracker Benchmark 2013, NfS 2017 ve Davis 2017 veri setleri üzerinde gerçekleştirilmiştir. Önerilen hibrit sistemin test sonuçları, üç ayrı tespit ve takip algoritmasının sonuçlarıyla karşılaştırılmıştır. Sonuçlar, hibrit sistemin video nesne takibi için işlem süresi dışında en iyi performansı verdiğini göstermektedir.