Browsing by Author "Gökçay, Erhan"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Master Thesis Akciğer Kanseri Histopatolojik Görüntü Sınıflandırmasının K-kat Çapraz Doğrulama ve Vahanade Tabanlı Dijital Görüntü İşleme Hattı Kullanılarak Geliştirilmesi(2025) Vesek, Mehmet Çağlar; Gökçay, ErhanKüresel kanser ölümlerinin önde gelen nedeni olan akciğer kanseri, kesin ve etkili tanı çözümleri gerektirir. Bu çalışma, LC25000 veri setinden yinelenenleri kaldırarak, üç sınıfta 14195 dengeli görüntüye (4727/4744/4724) düşüren yeni bir ön işleme adımı sunar; bu daha önce belgelenmemiş bir iyileştirmedir. 5 katlı çapraz doğrulama (5 epoch) altında InceptionResNetV2 ve ConViT-Small kullanılarak yapılan ilk sınıflandırma, hiperparametre ayarlaması olmadan benzeri görülmemiş bir maliyet etkinliği göstererek neredeyse mükemmel doğruluk (≤6 hata) elde etti. Daha düşük hesaplama gereksinimi nedeniyle seçilen ConViT-Small, TIFF dönüştürme ve renk normalizasyonu yoluyla daha da optimize edildi. Test edilen yöntemler arasında, Vahanade'nin dönüşümü Reinhard ve hibrit tekniklerden (örn. DCT-DWT, CLAHE) daha iyi performans göstererek, mükkemel doğruluk (0 hata), Kappa ve MCC puanları elde etti. Veri seti iyileştirme, hafif derin öğrenme ve sağlam görüntü işlemeyi entegre ederek, bu çalışma yüksek doğruluklu akciğer kanseri sınıflandırmasını ilerletiyor ve tıbbi görüntüleme için ölçeklenebilir çözümler sunuyor.Doctoral Thesis Arnold Cat Dönüsümünün Genelleştirilmesi ve Görüntü Steganografisinde Kesir Tabanlı Gömme(2019) Buker, Mohamed M.m.; Tora, Hakan; Gökçay, Erhan; Airframe and Powerplant MaintenanceVeri iletişiminin hızlı gelişimi ve ağlar aracılığıyla iletilen bilgilerin artması, değiş tokuş edilen bilgileri korumanın yeni yollarını bulmayı çok önemli kılmaktadır. Şifreleme günümüzde bu alanda en yaygın kullanılan yöntemlerden biridir. Steganografi, iletilen bilgilerin yalnızca şifrelenmekten ziyade herkes tarafından görünmez olduğu araştırma alanıdır. Steganografinin arkasındaki fikir bilginin varlığını gizlemektir. Bir üçüncü taraf bilgi olduğunu bildiği sürece, şifreli olsun ya da olmasın, bilgi risk altında olacaktır. Bu tezde, iki güvenlik seviyeli bir steganografik model sunuyoruz. İlk olarak, gizli görüntü Genelleştirilmiş Arnold CAT Haritamız (ACM) kullanılarak karıştırılmıştır. Daha sonra, karıştırılmış görüntü, dönüşüm bölgesinde hem Ayrık Dalgacık Dönüşümü (DWT) hem de Kaldırılmış Dalgacık Dönüşümü (LWT) ile Kesir Tabanlı Gömme Tekniğimizi (FBE) kullanarak başka bir görüntünün içine gömülür. Modelimizin verimliliği, referans renkli görüntüler üzerinde test edildi. Tepe Sinyal Gürültü Oranı (PSNR), Ortalama Kare Hatası (MSE), Yapısal Benzerlik (SSIM) ve Korelasyon değerleri hesaplandı. Sonuçlar, Genelleştirilmiş ACM'mizin, ACM'nin standart ve değiştirilmiş versiyonlarına kıyasla daha sağlam olduğunu göstermektedir. Aynı zamanda, yeni FBE tekniğimizin sonuçları, PSNR ve MSE değerleri ile ilgili diğer tekniklerden daha iyi performans göstermektedir.Master Thesis Frekans Alanında Görüntü Sınıflandırma için Konvolüsyonel Sinir Ağlarının Uygulanması(2024) Dağı, Göktuğ Erdem; Gökçay, Erhan; Tora, HakanBu tezde, Evrişimsel Sinir Ağları (CNN'ler) son yıllarda çeşitli görüntü işleme ve bilgisayarlı görme görevlerinde dikkate değer başarılar elde etmiştir. Geleneksel CNN'ler doğrudan uzaysal alan görüntüleri üzerinde çalışır. Bununla birlikte, Hızlı Fourier Dönüşümü (FFT) yoluyla elde edilen görüntülerin frekans alanı gösterimi, piksel değerlerinin ilişkisizleştirilmesi ve hesaplama karmaşıklığında potansiyel azalma gibi benzersiz avantajlar sunar. Bu tez, görüntü sınıflandırmasını ve tanıma doğruluğunu artırmak için FFT ile dönüştürülmüş görüntülerin CNN algoritmalarına girdi olarak kullanılmasının etkilerini araştırmayı amaçlamaktadır. Araştırma, FFT'nin teorik temellerinin ve özelliklerinin kapsamlı bir incelemesiyle başlıyor. Daha sonra CNN'ler için ön işleme ardışık düzenlerinde FFT'nin entegrasyonunu araştırıyor. Giriş görüntülerini uzamsal alandan frekans alanına dönüştürerek, CNN'lerin en önemli frekans bileşenlerine odaklanarak daha verimli öğrenebileceğini, dolayısıyla yakınsama oranlarını ve genel performansı potansiyel olarak iyileştirebileceğini varsayıyoruz. Bunun etkinliğini değerlendirmek için CIFAR-10 (Kanada İleri Araştırma Enstitüsü), MNIST (Modifiye Ulusal Standartlar ve Teknoloji Enstitüsü)-Digits ve MNIST-Fashion dahil olmak üzere çeşitli kıyaslama veri setleri kullanılarak deneyler gerçekleştirildi. yaklaşmak. FFT ile dönüştürülmüş görüntüler çeşitli CNN mimarilerine beslendi ve sonuçlar, geleneksel uzaysal alan girdileri kullanılarak elde edilenlerle karşılaştırıldı. Sınıflandırma doğruluğu, eğitim süresi ve hesaplamalı kaynak kullanımı gibi ölçümler titizlikle analiz edildi. Sonuçlar, FFT tabanlı ön işlemenin, özellikle veri kümelerinin yüksek frekanslı gürültü veya gereksiz bilgi içerdiği senaryolarda, sınıflandırma doğruluğunda iyileştirmelere yol açabileceğini göstermektedir. Ancak faydaların farklı veri kümeleri ve ağ mimarileri arasında farklılık göstermesi, FFT ön işlemenin etkililiğinin bağlama bağlı olabileceğini düşündürmektedir. Sonuç olarak bu tez, FFT ön işlemesinin CNN iş akışlarına dahil edilmesinin görüntü işleme görevlerini geliştirme konusunda umut vaat ettiğini göstermektedir. Bulgular, hem uzaysal hem de frekans alanı bilgisinden yararlanan hibrit modellerin geliştirilmesi ve FFT tabanlı tekniklerin diğer sinir ağı türlerine ve makine öğrenimi algoritmalarına uygulanması da dahil olmak üzere gelecekteki araştırmalar için yollar önermektedir. Bu çalışma, bilgisayarlı görme alanını geliştirmek için frekans alanı analizinin derin öğrenme metodolojileriyle nasıl sinerjik olarak entegre edilebileceğinin daha geniş bir şekilde anlaşılmasına katkıda bulunmaktadır.Doctoral Thesis Görüntü Füzyonu Kullanarak Tıbbi Görüntülerden Gürültü Arındırma(2020) Sıddık, Omer Subhı Sıddık; Gökçay, Erhan; Software EngineeringGörüntü füzyonu birçok erişilebilir görüntüden birinci kalite görüntü alma sistemidir. En önemli yöntem yüksek geçirim filtreleme yöntemidir. Daha sonraki yöntemler Dual-Tree Complex DWT (DTCWT), tek-tip rasyonel filtre bankası ve piramit teknikleri üzerine kuruludur. Bu tez çalışması, sefalometrik röntgen görüntülerinde Gaussian ve Poisson gürültü arındırma yöntemleri üzerinden görüntü birleştirme konusunu ele almaktadır. Görüntünün iletilmesi ve toplanması esnasında hedefsiz haberleşme ve ekipman yetersizliği gibi nedenlerden ötürü dijital görüntü uygulamaları hata vermektedir. Korumasız iletim nedeni ile zarar görmüş görüntüler farklı sensörler aracılığı ile tespit edilir. Gürültü arındırma işlemi sonrasında elde edilen görüntüler, yüksek kalite çözünürlüğe sahip tek bir görüntü elde etmek için birbirleri ile birleştirilirler. Tek bir nihai görüntü elde etmek için iki veya daha fazla görüntünün birleştirilmesi işlemine görüntü füzyonu denilir. Bu tezde farklı görüntü füzyon algoritmaları ve (Gaussian ve Poisson) gürültü filtreleri kullanıldı. 4. bölümde yer alan metodoloji ve sonuç kısmı yirmi bir yöntemden oluşmaktadır. Bu yöntemlerden ilk on üç tanesi bu tez çalışması ile alakalı olan görüntü güçlendirme yöntemlerini içermektedir ve yine bu yöntemler tarafımızca önerilen gürültü arındırma işleminde kullanılmıştır. Bu yöntemler şu şekilde sunulmuştur: Görüntü gürültü arındırma işlemimde ilk sekiz yöntem eşikleme ve küçültme yöntemleri kullanılarak sunulmuş, sonrasında iki adet filtre yöntemi görüntü filtreleme de sunulmuş ve son olarak da üç yöntem füzyon yöntemlerinde kullanılmıştır. Son sekiz yöntem çok sayıda aşamadan oluşmaktadır ve bu aşamaların her biri önceden test edilmiş olan en iyi sonuçlar ele alınarak gerçekleştirilmiştir. Bu tez çalışmasında, 'Dual-Tree Complex Discrete Wavelet Transform' olarak adlandırılan çok sensörlü dönüşüm bazlı füzyon teknolojileri ile birlikte elde edilen 400 sefalometrik röntgen görüntülerini kullanan farklı yöntemler kullanılmıştır. Sinyal, 'Dual-Tree Complex Discrete Wavelet Transform' kullanılarak farklı frekans alt bantlarına ayrıştırılmıştır. Düşük frekanslı alt bantlardan gürültüyü arındırmak için iki yanlı filtreleme yöntemi kullanılmış, yüksek frekanslı alt bantlar için ise 'Bivariate Shrinkage' dalgacık eşiklemesi kullanılmıştır. Gürültüden arındırılmış alt bantlar, dalgacık dönüşüm füzyon kuralı esas alınarak birleştirilmiştir. Test sonuçları bu birleştirme algoritmalarının yüksek kaliteli bir görüntü ortaya çıkardığını göstermektedir.Master Thesis Kademeli Evrişimli Sinir Ağlarında Uyarlanabilir Ağ Seçimi Tekniği(2023) Önal, Ekin Sarp; Gökçay, Erhan; Software EngineeringDinamik sinir ağı, derin öğrenmede önemli bir araştırma alanıdır. Sunulan tez, statik modellerin verimliliğini ve uyarlanabilirliğini artırmak için iki veya daha fazla sinir ağını artan derinlikte bağlamak için bir yönlendirici kullanan kademeli sinir ağına odaklanmaktadır. Bu tezde, kademeli derin sinir ağlarında ağ seçimi için parametresiz bir teknik önerdik. Bu teknik, sığ ağların da birçok örneği doğru bir şekilde sınıflandırabilmesi gerçeğinden yararlanarak, eğitim ve çıkarım için gereken hesaplama süresini azaltmayı amaçlamaktadır. Kademeli sinir ağı, softmax marjı ve klasik LeNet modelinin kısa bir açıklamasını takiben, yeni bir kademeli sinir ağı algoritması tanıtılmaktadır. Önerilen model; MNIST, EMNIST ve Fashion-MNIST veri kümelerinde etkinlik ve performans açısından LeNet ile karşılaştırılmaktadır. Sayısal sonuçlar, önerilen teknikle referans modelinin verimliliğinin büyük ölçüde arttığını ve doğruluktan ödün vermeden geliştirildiğini göstermektedir.Master Thesis Sondaj Kulesi Otomasyon Sistemi için Opc-ua Bazlı Kullanıcı Arayüzü Geliştirimi(2018) Aksu, Fermude; Özbek, Mehmet Efe; Gökçay, Erhan; Department of Electrical & Electronics EngineeringOPC-UA , tüm verileri tümleşik adres uzayında toplayan, verinin istemciler ve sunucular arasında paylaşımını sağlarken nesneleri bağlantılayan, endüstriyel otomasyon sistemleri için sofistike bir servis odaklı mimari ve iletişim teknolojisidir. OPC-UA teknolojisi, sunucu-istemci bağlamında, istemciye erişilebilir nesneleri ve nesnelerin diğer nesneler ile olan bağlantısını sağlamakta , sunucu tarafından transfer edilen veriyi oluşturma, silme, değiştirme ve metod çağırma gibi müdahalelere olanak vermektedir. Bu tez, gerçek zamanlı TwinCAT3 bütünleşik geliştirme ortamında, 'Structured Text' dili kullanılarak OPC-UA sunucu yazılım katmanı oluşturmayı , Java istemciye entegre grafik kullanıcı arayüzü ve konsol aracılığı ile nesnenin ve sunucu yazılım katmanının kullanıcının ulaşmasına izin verdiği verilerinin gerçek zamanlı olarak yayınlanmasını içerir. Nesneyi oluşturmak için TwinCAT3 bütünleşik geliştirme ortamı kullanılmıştır. Structured Text kodu ile geliştirilen nesne OPC-UA sunucu / JAVA istemci iletişimi ile arayüz uygulanarak yayınlanmıştır. Bu çalışma, endüstriyel otomasyon sistemlerinde OPC-UA teknolojisinin petrol kulesi otomasyon sistemindeki fonksiyonelliğini göstermektedir.Master Thesis Videoda Nesne Takibi için Hibrit Metot Geliştirmesi(2019) Taşan, Hakan; Gökçay, Erhan; Software EngineeringVideodaki nesnenin algılanması ve takibi, bilgisayarla görü ve görüntü işlemede önemli bir araştırma alanı olarak ortaya çıkmıştır. Nesne takibi için birçok algoritma geliştirilmiştir ve her algoritmanın başarılı veya başarısız olduğu bazı koşullar vardır. Bu tezde, videoda nesne takibi amacıyla üç nesne tespiti ve takibi algoritmasından oluşan güçlü bir karma sistem önerilmiştir. Bunlar şablon eşleştirme, renk histogramı ve özellik çıkarımına dayalı SURF algoritmalarıdır. Bu algoritmaları hibrit sistemde uygulamak için OpenCV kütüphanesi kullanılmıştır. Algoritmalar uygulanırken; gaussian blur, renk uzayı dönüşümleri, Otsu eşiklemesi, kayan pencere yaklaşımı, özellik çıkarımı ve betimlemesi, ve uzaklık hesaplamaları gibi farklı teknikler uygulanmıştır. Videodaki herhangi bir nesne seçilebilir ve seçilen nesne videonun geri kalanında takip edilebilir. Nesnenin tıkanmasını önlemek ve sahnenin ani hareketinin etkilerini en aza indirmek için, videonun her beşinci karesinde seçilen nesnenin yenilenmesi yaklaşımı kullanılır. Hibrit sistemin amacı, video karelerindeki takip edilecek nesnenin tespit oranını iyileştirmektir. Tüm performans testleri NTU-VOI 2018, Visual Tracker Benchmark 2013, NfS 2017 ve Davis 2017 veri setleri üzerinde gerçekleştirilmiştir. Önerilen hibrit sistemin test sonuçları, üç ayrı tespit ve takip algoritmasının sonuçlarıyla karşılaştırılmıştır. Sonuçlar, hibrit sistemin video nesne takibi için işlem süresi dışında en iyi performansı verdiğini göstermektedir.