Kademeli Evrişimli Sinir Ağlarında Uyarlanabilir Ağ Seçimi Tekniği

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Dinamik sinir ağı, derin öğrenmede önemli bir araştırma alanıdır. Sunulan tez, statik modellerin verimliliğini ve uyarlanabilirliğini artırmak için iki veya daha fazla sinir ağını artan derinlikte bağlamak için bir yönlendirici kullanan kademeli sinir ağına odaklanmaktadır. Bu tezde, kademeli derin sinir ağlarında ağ seçimi için parametresiz bir teknik önerdik. Bu teknik, sığ ağların da birçok örneği doğru bir şekilde sınıflandırabilmesi gerçeğinden yararlanarak, eğitim ve çıkarım için gereken hesaplama süresini azaltmayı amaçlamaktadır. Kademeli sinir ağı, softmax marjı ve klasik LeNet modelinin kısa bir açıklamasını takiben, yeni bir kademeli sinir ağı algoritması tanıtılmaktadır. Önerilen model; MNIST, EMNIST ve Fashion-MNIST veri kümelerinde etkinlik ve performans açısından LeNet ile karşılaştırılmaktadır. Sayısal sonuçlar, önerilen teknikle referans modelinin verimliliğinin büyük ölçüde arttığını ve doğruluktan ödün vermeden geliştirildiğini göstermektedir.
Dynamic neural network is an important research area in deep learning. The presented thesis focuses on cascaded neural network which is a sub-topic of dynamic neural network, that utilizes a router for connecting two or more neural networks with increasing depth in order to enhance the efficiency and adaptiveness of static models. In this thesis, we proposed a parameter-free technique for network selection in cascaded deep neural networks in order to reduce the computational time required for training and inference by taking advantage of the fact that shallow networks are also able to correctly classify many samples. Following a brief explanation of the cascaded neural network, softmax margin, and classical LeNet model; a novel cascaded neural network algorithm is introduced. The proposed model is compared to LeNet in terms of efficiency and performance on MNIST, EMNIST, and Fashion-MNIST datasets with various networks utilized as small modules of the cascaded model. Numerical results demonstrated that the proposed technique greatly improves the efficiency of the benchmark model without sacrificing accuracy.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

67

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo