1. Home
  2. Browse by Author

Browsing by Author "Damasevicius, Robertas"

Filter results by typing the first few letters
Now showing 1 - 20 of 32
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 36
    Citation - Scopus: 59
    Adoption of Mobile Applications for Teaching-Learning Process in Rural Girls' Schools in India: an Empirical Study
    (Springer, 2020) Chatterjee, Sheshadri; Majumdar, Dipasree; Misra, Sanjay; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    The purpose of this study is to identify the factors that can impact the adoption of mobile apps for teaching-learning process focusing on the girls' school in rural India. The hypotheses were proposed and a conceptual model has been developed. There is a survey work conducted to collect the data from different respondents using a convenience sampling method. The model has been validated statistically through PLS-SEM analysis covering feedbacks of 271 effective respondents. The study highlights the impact of different antecedents of the behavioural intention of the students of using mobile applications for teaching-learning process. The results also show that among other issues, price value has insignificant influence on the intention of the girl students of the rural India. During survey feedbacks have been obtained from the 271 respondents, which is meagre compared to vastness of the population and school of rural India. Only few predictors have been considered leaving possibilities of inclusion of other boundary conditions to enhance the explanative power more than that has been achieved in the proposed model with the explanative power of 81%. The model has provided laudable inputs to the educational policy makers and technology enablers and administrators to understand the impact of the mobile applications on the rural girls' school of India and facilitate the development of m-learning. Very few studies been conducted to explore the impact of mobile applications on the school education of rural India especially focusing on the girls' schools.
  • Loading...
    Thumbnail Image
    Article
    Citation - Scopus: 4
    Attitude of Mobile Telecommunication Subscribers Towards Sim Card Registration in Lagos State, Southwestern Nigeria
    (Springer india, 2019) Oyediran, O.; Omoshule, A.; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Despite the concerted effort of the Nigeria Communication Commission (NCC) to ensure that Nigeria mobile phone subscribers register their SIM cards, there has been some level of apathy on the part of the mobile phone subscribers. This study investigated the attitude of mobile telecommunication subscribers towards SIM card registration in Lagos Metropolis, Nigeria. The theories of planned behaviour and reasoned action were adapted for the study because they provide the necessary constructs that help to investigate the attitudes of telecommunication subscribers. The purposive sampling technique was adopted in selecting five local government areas within Lagos. Random sampling method was used to select 300 mobile phone subscribers. In total, 290 responses were collected and were found usable. Data analysis was performed using statistical methods, and Spearman's correlation analysis was used to test relationship between the variables of interest. The results of the study revealed that SIM card users have positive attitude towards SIM card registration. Perceived usefulness and perceived ease of use significantly influenced subscribers attitude towards SIM card registration with both of them having negative significant relationship with attitude towards registration (r = -.116, r = -.132, p < 0.05) respectively.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 98
    Citation - Scopus: 155
    Cassava Disease Recognition From Low-Quality Images Using Enhanced Data Augmentation Model and Deep Learning
    (Wiley, 2021) Abayomi-Alli, Olusola Oluwakemi; Damasevicius, Robertas; Misra, Sanjay; Maskeliunas, Rytis; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Improvement of deep learning algorithms in smart agriculture is important to support the early detection of plant diseases, thereby improving crop yields. Data acquisition for machine learning applications is an expensive task due to the requirements of expert knowledge and professional equipment. The usability of any application in a real-world setting is often limited by unskilled users and the limitations of devices used for acquiring images for classification. We aim to improve the accuracy of deep learning models on low-quality test images using data augmentation techniques for neural network training. We generate synthetic images with a modified colour value distribution to expand the trainable image colour space and to train the neural network to recognize important colour-based features, which are less sensitive to the deficiencies of low-quality images such as those affected by blurring or motion. This paper introduces a novel image colour histogram transformation technique for generating synthetic images for data augmentation in image classification tasks. The approach is based on the convolution of the Chebyshev orthogonal functions with the probability distribution functions of image colour histograms. To validate our proposed model, we used four methods (resolution down-sampling, Gaussian blurring, motion blur, and overexposure) for reducing image quality from the Cassava leaf disease dataset. The results based on the modified MobileNetV2 neural network showed a statistically significant improvement of cassava leaf disease recognition accuracy on lower-quality testing images when compared with the baseline network. The model can be easily deployed for recognizing and detecting cassava leaf diseases in lower quality images, which is a major factor in practical data acquisition.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 16
    Citation - Scopus: 28
    Comparative Study of Real Time Machine Learning Models for Stock Prediction Through Streaming Data
    (Graz Univ Technolgoy, inst information Systems Computer Media-iicm, 2020) Behera, Ranjan Kumar; Das, Sushree; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Computer Engineering; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Stock prediction is one of the emerging applications in the field of data science which help the companies to make better decision strategy. Machine learning models play a vital role in the field of prediction. In this paper, we have proposed various machine learning models which predicts the stock price from the real-time streaming data. Streaming data has been a potential source for real-time prediction which deals with continuous flow of data having information from various sources like social networking websites, server logs, mobile phone applications, trading floors etc. We have adopted the distributed platform, Spark to analyze the streaming data collected from two different sources as represented in two case studies in this paper. The first case study is based on stock prediction from the historical data collected from Google finance websites through NodeJs and the second one is based on the sentiment analysis of Twitter collected through Twitter API available in Stanford NLP package. Several researches have been made in developing models for stock prediction based on static data. In this work, an effort has been made to develop scalable, fault tolerant models for stock prediction from the real-time streaming data. The Proposed model is based on a distributed architecture known as Lambda architecture. The extensive comparison is made between actual and predicted output for different machine learning models. Support vector regression is found to have better accuracy as compared to other models. The historical data is considered as a ground truth data for validation.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    A Complexity Metrics Suite for Cascading Style Sheets
    (Mdpi, 2019) Adewumi, Adewole; Misra, Sanjay; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    We perform a theoretical and empirical analysis of a set of Cascading Style Sheets (CSS) document complexity metrics. The metrics are validated using a practical framework that demonstrates their viability. The theoretical analysis is performed using the Weyuker's properties-a widely adopted approach to conducting empirical validations of metrics proposals. The empirical analysis is conducted using visual and statistical analysis of distribution of metric values, Cliff's delta, Chi-square and Liliefors statistical normality tests, and correlation analysis on our own dataset of CSS documents. The results show that five out of the nine metrics (56%) satisfy Weyuker's properties except for the Number of Attributes Defined per Rule Block (NADRB) metric, which satisfies six out of nine (67%) properties. In addition, the results from the statistical analysis show good statistical distribution characteristics (only the Number of Extended Rule Blocks (NERB) metric exceeds the rule-of-thumb threshold value of the Cliff's delta). The correlation between the metric values and the size of the CSS documents is insignificant, suggesting that the presented metrics are indeed complexity rather than size metrics. The practical application of the presented CSS complexity metric suite is to assess the risk of CSS documents. The proposed CSS complexity metrics suite allows identification of CSS files that require immediate attention of software maintenance personnel.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 42
    Citation - Scopus: 64
    Deep Learning Based Fall Detection Using Smartwatches for Healthcare Applications
    (Elsevier Sci Ltd, 2022) Sengul, Gokhan; Karakaya, Murat; Misra, Sanjay; Abayomi-Alli, Olusola O.; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    We implement a smart watch-based system to predict fall detection. We differentiate fall detection from four common daily activities: sitting, squatting, running, and walking. Moreover, we separate falling into falling from a chair and falling from a standing position. We develop a mobile application that collects the acceleration and gyroscope sensor data and transfers them to the cloud. In the cloud, we implement a deep learning algorithm to classify the activity according to the given classes. To increase the number of data samples available for training, we use the Bica cubic Hermite interpolation, which allows us to improve the accuracy of the neural network. The 38 statistical data features were calculated using the rolling update approach and used as input to the classifier. For activity classification, we have adopted the bi-directional long short-term memory (BiLSTM) neural network. The results demonstrate that our system can detect falling with an accuracy of 99.59% (using leave-one-activityout cross-validation) and 97.35% (using leave-one-subject-out cross-validation) considering all activities. When considering only binary classification (falling vs. all other activities), perfect accuracy is achieved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 11
    Citation - Scopus: 16
    Deep Neural Networks for Curbing Climate Change-Induced Farmers-Herdsmen Clashes in a Sustainable Social Inclusion Initiative
    (Politechnika Lubelska, 2019) Okewu, Emmanuel; Misra, Sanjay; Fernandez Sanz, Luis; Ayeni, Foluso; Mbarika, Victor; Damasevicius, Robertas; Computer Engineering; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Peaceful coexistence of farmers and pastoralists is becoming increasingly elusive and has adverse impact on agricultural revolution and global food security. The targets of Sustainable Development Goal 16 (SDG 16) include promoting peaceful and inclusive societies for sustainable development, providing access to justice for all and building effective, accountable and inclusive institutions at all levels. As a soft approach and long term solution to the perennial farmers herdsmen clashes with attendant humanitarian crisis, this study proposes a social inclusion architecture using deep neural network (DNN). This is against the backdrop that formulating policies and implementing programmes based on unbiased information obtained from historical agricultural data using intelligent technology like deep neural network (DNN) can be handy in managing emotions. In this vision paper, a DNN-based Farmers-Herdsmen Expert System (FHES) is proposed based on data obtained from the Nigerian National Bureau of Statistics for tackling the incessant climate change induced farmers-herdsmen clashes, with particular reference to Nigeria. So far, many lives have been lost. FHES is modelled as a deep neural network and trained using farmers-herdsmen historical data. Input variables used include land, water, vegetation, and implements while the output is farmers/herders disposition to peace. Regression analysis and pattern recognition performed by the DNN on the farmers-herdsmen data will enrich the inference engine of FHES with extracted rules (knowledge base). This knowledge base is then relied upon to classify future behaviours of herdsmen/farmers as well as predict their dispositions to violence. Critical stakeholders like governments, service providers and researchers can leverage on such advisory to initiate proactive and socially inclusive conflict prevention measures such as, people-friendly policies, programmes and legislations. This way, conflicts can be averted, national security challenges tackled, and peaceful atmosphere guaranteed for sustainable development.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 78
    Citation - Scopus: 127
    Detecting Cassava Mosaic Disease Using a Deep Residual Convolutional Neural Network With Distinct Block Processing
    (Peerj inc, 2021) Oyewola, David Opeoluwa; Dada, Emmanuel Gbenga; Misra, Sanjay; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    For people in developing countries, cassava is a major source of calories and carbohydrates. However, Cassava Mosaic Disease (CMD) has become a major cause of concern among farmers in sub-Saharan Africa countries, which rely on cassava for both business and local consumption. The article proposes a novel deep residual convolution neural network (DRNN) for CMD detection in cassava leaf images. With the aid of distinct block processing, we can counterbalance the imbalanced image dataset of the cassava diseases and increase the number of images available for training and testing. Moreover, we adjust low contrast using Gamma correction and decorrelation stretching to enhance the color separation of an image with significant band-to-band correlation. Experimental results demonstrate that using a balanced dataset of images increases the accuracy of classification. The proposed DRNN model outperforms the plain convolutional neural network (PCNN) by a significant margin of 9.25% on the Cassava Disease Dataset from Kaggle.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 18
    Citation - Scopus: 34
    Distributed Centrality Analysis of Social Network Data Using Mapreduce
    (Mdpi, 2019) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Analyzing the structure of a social network helps in gaining insights into interactions and relationships among users while revealing the patterns of their online behavior. Network centrality is a metric of importance of a network node in a network, which allows revealing the structural patterns and morphology of networks. We propose a distributed computing approach for the calculation of network centrality value for each user using the MapReduce approach in the Hadoop platform, which allows faster and more efficient computation as compared to the conventional implementation. A distributed approach is scalable and helps in efficient computations of large-scale datasets, such as social network data. The proposed approach improves the calculation performance of degree centrality by 39.8%, closeness centrality by 40.7% and eigenvalue centrality by 41.1% using a Twitter dataset.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 13
    Citation - Scopus: 15
    An E-Environment System for Socio-Economic Sustainability and National Security
    (Politechnika Lubelska, 2018) Okewu, Emmanuel; Misra, Sanjay; Fernandez Sanz, Luis; Maskeliunas, Rytis; Damasevicius, Robertas; Computer Engineering; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Though there are adequate institutional frameworks and legal instruments for the protection of the Sub-Saharan African environment, their impact on the development and conservation (protection) of the environment leaves much to be desired. This assertion is substantiated by the reality that inspite of these regulatory frameworks, the environment is largely degraded with negative ramifications for the twin goals of attaining sustainable socio-economic advancement and realization of environmental rights. Both national and regional state of environment (SoE) reports show that degradation is apparent. It is worthy of mention that almost all African countries have ratified and domesticated the various regional and subregional environmental agreement. Efforts to solve the puzzle have revealed that corruption and environmental degradation in Sub-Saharan Africa are closely linked. Financial impropriety in ecological funds management, poorly equipped environmental protection institutions, and inadequate citizens' environmental management awareness campaigns are outcomes of corruption in the public sector. Since corruption thrives in the absence of transparency and accountability, this study proposes a cutting-edge technology-based solution that promotes participatory environmental accountability using an e-Environment system. The web-based multi-tier e-Environment system will empower both citizens and government officials to deliberate online real-time on environmental policies, programmes and projects to be embarked upon. Both parties will equally put forward proposals on the use of tax payers money in the environment sector while monitoring discrepancies between amount budgeted, amount released and actual amount spent. We applied design and software engineering skills to actualize the proposed solution. Using Nigeria as case study, our research methodology comprised literature review, requirements gathering, design of proposed solution using universal modelling language (UML) and development/implementation on the Microsoft SharePoint platform. In view of our determination to evolve a zero-defect software, we applied Cleanroom Software Engineering techniques. The outcome obtained so far has proved that the model supports our expectations. The system is not only practical, but ecologically sound. It is anticipated that the full-scale implementation of such an enterprise e-Environment system will decrease the current tide of corruption in the environment sector, mitigate environmental degradation and by extension, reduce social-economic tensions and guarantee national security.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 18
    Citation - Scopus: 27
    Few-Shot Learning With a Novel Voronoi Tessellation-Based Image Augmentation Method for Facial Palsy Detection
    (Mdpi, 2021) Abayomi-Alli, Olusola Oluwakemi; Damasevicius, Robertas; Maskeliunas, Rytis; Misra, Sanjay; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Face palsy has adverse effects on the appearance of a person and has negative social and functional consequences on the patient. Deep learning methods can improve face palsy detection rate, but their efficiency is limited by insufficient data, class imbalance, and high misclassification rate. To alleviate the lack of data and improve the performance of deep learning models for palsy face detection, data augmentation methods can be used. In this paper, we propose a novel Voronoi decomposition-based random region erasing (VDRRE) image augmentation method consisting of partitioning images into randomly defined Voronoi cells as an alternative to rectangular based random erasing method. The proposed method augments the image dataset with new images, which are used to train the deep neural network. We achieved an accuracy of 99.34% using two-shot learning with VDRRE augmentation on palsy faces from Youtube Face Palsy (YFP) dataset, while normal faces are taken from Caltech Face Database. Our model shows an improvement over state-of-the-art methods in the detection of facial palsy from a small dataset of face images.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 18
    Citation - Scopus: 24
    Fusion of Smartphone Sensor Data for Classification of Daily User Activities
    (Springer, 2021) Sengul, Gokhan; Ozcelik, Erol; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 18
    Citation - Scopus: 22
    Gender Detection Using 3d Anthropometric Measurements by Kinect
    (Polska Akad Nauk, Polish Acad Sciences, 2018) Camalan, Seda; Sengul, Gokhan; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas; Computer Engineering; Information Systems Engineering; 06. School Of Engineering; 01. Atılım University
    Automatic gender detection is a process of determining the gender of a human according to the characteristic properties that represent the masculine and feminine attributes of a subject. Automatic gender detection is used in many areas such as customer behaviour analysis, robust security system construction, resource management, human-computer interaction, video games, mobile applications, neuro-marketing etc., in which manual gender detection may be not feasible. In this study, we have developed a fully automatic system that uses the 3D anthropometric measurements of human subjects for gender detection. A Kinect 3D camera was used to recognize the human posture, and body metrics are used as features for classification. To classify the gender, KNN, SVM classifiers and Neural Network were used with the parameters. A unique dataset gathered from 29 female and 31 male (a total of 60 people) participants was used in the experiment and the Leave One Out method was used as the cross-validation approach. The maximum accuracy achieved is 96.77% for SVM with an MLP kernel function.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 62
    Citation - Scopus: 78
    Hybrid Microgrid for Microfinance Institutions in Rural Areas - a Field Demonstration in West Africa
    (Elsevier, 2019) Ayodele, Esan; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    We present a hybrid energy microgrid optimization model for a microbank in a remote rural residential area. The model is based on the use of renewable (wind turbines & solar photovoltaic (PV)) and conventional (gasoline generators) energy sources and battery storage systems. We conducted a detailed assessment of a typical microbank's load, residential loads and energy resources in a village called Ajasse-Ipo in Kwara State, Nigeria. We performed the modeling of a hybrid microgrid system, followed by an economic analysis and sensitivity analysis to optimize the hybrid system design. We performed simulations based on the energy resources available (solar PV, wind, gasoline generator & battery energy storage system) to satisfy the energy demands of the microbank, while the excess energy was supplied to meet the demand of the community loads, i.e. water pumping machine and rural home lighting. The results obtained showed that the hybrid system comprising the solar PV/battery/diesel was most techno-economically viable with a Net Present Cost (NPC) and Cost of Energy (COE) of $468,914 and 0.667$/kWh, respectively. Comparing these results with those obtained using analytical methods, the solar PV, battery and converter sizes obtained were slightly higher than the optimal system configurations as produced by HOMER. The proposed hybrid energy system also allowed to achieve almost 50% reductions in CO2, CO, unburned hydrocarbons, particulate matter, SO2 & NO2. The system can be applicable for other rural regions in the developing countries with similar environmental conditions.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 25
    Identifying Phishing Attacks in Communication Networks Using Url Consistency Features
    (inderscience Enterprises Ltd, 2020) Azeez, Nureni Ayofe; Salaudeen, Balikis Bolanle; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Phishing is a fraudulent attempt by cybercriminals, where the target audience is addressed by a text message, phone call or e-mail, requesting classified and sensitive information after presenting himself/herself as a legitimate agent. Successful phishing attack may result into financial loss and identity theft. Identifying forensic characteristics of phishing attack can help to detect the attack and its perpetuators and as well as to enable defence against it. To shield internet users from phishing assaults, numerous anti-phishing models have been proposed. Currently employed techniques to handle these challenges are not sufficient and capable enough. We aim at identifying phishing sites in order to guard internet users from being vulnerable to any form of phishing attacks by verifying the conceptual and literal consistency between the uniform resource locator (URL) and the web content. The implementation of the proposed PhishDetect method achieves an accuracy of 99.1%; indicating that it is effective in detecting various forms of phishing attacks.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 7
    Citation - Scopus: 15
    Impact Analysis of Renewable Energy Based Generation in West Africa - a Case Study of Nigeria
    (Politechnika Lubelska, 2021) Adeyemi-Kayode, Temitope M.; Misra, Sanjay; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    The limited supply of fossil fuels, constant rise in the demand of energy and the importance of reducing greenhouse emissions has brought about the adoption of renewable energy sources for generation of electrical power. In this paper, the impact of renewable energy generation in Nigeria is explored. A review of renewable deposits in Nigeria with a focus on Solar, Biomass, Hydropower, Pumped Storage Hydro and Ocean energy is detailed. The impact of renewable energy-based generation is assessed from three different dimensions: Economic Impact, Social Impact and Environmental Impact. In accessing economic impact; the conditions are employment and job creation, gross domestic product (GDP) growth and increase in local research and development. To analyze the social impact; renewable energy education, renewable energy businesses, ministries and institutes, renewable energy projects and investments as well as specific solar and wind projects across Nigeria were considered. Also, environmental issues were discussed. Similarly, policy imperatives for renewable energy generation in Nigeria was provided. This paper would be useful in accessing the successes Nigeria has experienced so far in the area of sustainable development and the next steps to achieving universal energy for all in Nigeria in 2030.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 9
    Citation - Scopus: 15
    Increasing Innovative Working Behaviour of Information Technology Employees in Vietnam by Knowledge Management Approach
    (Mdpi, 2020) Quoc Trung Pham; Anh-Vu Pham-Nguyen; Misra, Sanjay; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Today, Knowledge Management (KM) is becoming a popular approach for improving organizational innovation, but whether encouraging knowledge sharing will lead to a better innovative working behaviour of employees is still a question. This study aims to identify the factors of KM affecting the innovative working behaviour of Information Technology (IT) employees in Vietnam. The research model involves three elements: attitude, subjective norm and perceived behavioural control affecting knowledge sharing, and then, on innovative working behaviour. The research method is the quantitative method. The survey was conducted with 202 samples via the five-scale questionnaire. The analysis results show that knowledge sharing has a positive impact on the innovative working behaviour of IT employees in Vietnam. Besides, attitude and perceived behavioural control are confirmed to have a strong positive effect on knowledge sharing, but the subjective norm has no significant impact on knowledge sharing. Based on this result, recommendations to promote knowledge sharing and the innovative work behaviour of IT employees in Vietnam are made.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 9
    An Intelligent Advisory System To Support Managerial Decisions for a Social Safety Net
    (Mdpi, 2019) Okewu, Emmanuel; Misra, Sanjay; Okewu, Jonathan; Damasevicius, Robertas; Maskeliunas, Rytis; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Social investment programs are designed to provide opportunities to the less privileged so that they can contribute to the socioeconomic development of society. Stakeholders in social safety net programs (SSNPs) target vulnerable groups, such as the urban poor, women, the unemployed, and the elderly, with initiatives that have a transformative impact. Inadequate policy awareness remains a challenge, resulting in low participation rates in SSNPs. To achieve all-inclusive development, deliberate policies and programs that target this population have to be initiated by government, corporate bodies, and public-minded individuals. Artificial intelligence (AI) techniques could play an important role in improving the managerial decision support and policy-making process of SSNPs and increasing the social resilience of urban populations. To enhance managerial decision-making in social investment programs, we used a Bayesian network to develop an intelligent decision support system called the Social Safety Net Expert System (SSNES). Using the SSNES, we provide an advisory system to stakeholders who make management decisions, which clearly demonstrates the efficacy of SSNPs and inclusive development.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 31
    Citation - Scopus: 36
    Large Scale Community Detection Using a Small World Model
    (Mdpi, 2017) Behera, Ranjan Kumar; Rath, Santanu Kumar; Misra, Sanjay; Damasevicius, Robertas; Maskeliunas, Rytis; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 24
    Citation - Scopus: 39
    Network Intrusion Detection With a Hashing Based Apriori Algorithm Using Hadoop Mapreduce
    (Mdpi, 2019) Azeez, Nureni Ayofe; Ayemobola, Tolulope Jide; Misra, Sanjay; Maskeliunas, Rytis; Damasevicius, Robertas; Computer Engineering; 06. School Of Engineering; 01. Atılım University
    Ubiquitous nature of Internet services across the globe has undoubtedly expanded the strategies and operational mode being used by cybercriminals to perpetrate their unlawful activities through intrusion on various networks. Network intrusion has led to many global financial loses and privacy problems for Internet users across the globe. In order to safeguard the network and to prevent Internet users from being the regular victims of cyber-criminal activities, new solutions are needed. This research proposes solution for intrusion detection by using the improved hashing-based Apriori algorithm implemented on Hadoop MapReduce framework; capable of using association rules in mining algorithm for identifying and detecting network intrusions. We used the KDD dataset to evaluate the effectiveness and reliability of the solution. Our results obtained show that this approach provides a reliable and effective means of detecting network intrusion.
  • «
  • 1 (current)
  • 2
  • »