Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Bayraktar, Miyase"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Dietary Total Antioxidant Capacity and Oxidative Stress in Patients With Type-2 Diabetes
    (Mattioli 1885, 2021) Cetiner, Ozlem; Sendur, Suleyman Nahit; Yalcin, Tuba; Bayraktar, Miyase; Rakicioglu, Neslisah
    Background: Reactive oxygen species can disrupt normal cellular functions by damaging DNA, protein, and lipid structures of the cell. Some antioxidant molecules may protect the body against reactive oxygen species. We aimed to investigate the relationship between the dietary intake of antioxidants and oxidative DNA damage in diabetic patients. Material and Methods: A total of 85 individuals were included in the study, of which 30 were newly diagnosed with type-2 diabetes, 30 were formerly diagnosed with type-2 diabetes, and 25 were healthy individuals. Twenty-four-hour dietary recalls were recorded for 3 consecutive days. Dietary total antioxidant capacity and dietary oxidative balance scores were calculated according to these records. Spot urine samples were collected and analyzed for 8-hydroxy-2' deoxyguanosine/creatinine. Results: Dietary total antioxidant capacity, estimated via different methods, was higher in the controls than that in patients with type-2 diabetes (p<0.05). The urinary 8-hydroxy-2'-deoxyguanosine/creatinine ratio, a reliable predictor of oxidative DNA damage, was also higher in non-diabetic patients (p<0.05). The urinary 8-hydroxy-2'-deoxyguanosine/creatinine ratio was not related to dietary antioxidant intake (p>0.05). Conclusion: Urinary 8-hydroxy-2'-deoxyguanosine/creatinine concentration may not always reflect the current oxidative status of the body.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback