Browsing by Author "Azad, Sina Kazemzadeh"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
- Article MO-ISCSO: A Challenging Benchmark Test Suite for Large-Scale Multi-Objective Structural Optimization(Elsevier Science inc, 2025) Azad, Saeid Kazemzadeh; Azad, Sina Kazemzadeh; Department of Civil EngineeringCurrent studies on the development of multi-objective algorithms for optimization of truss structures mainly depend on small-scale classic benchmark instances. This paper highlights the importance of establishing standard large-scale multi-objective structural optimization benchmarking suites for accurate validation of the proposed algorithms. A new benchmark test suite, called MO-ISCSO, is proposed for large-scale multi-objective structural optimization, based on the most recent optimization problems of the international student competition in structural optimization (ISCSO). Owing to the very small feasibility ratios of the MO-ISCSO instances, the effect of presence of feasible designs in the initial population of NSGA-II, GDE3, and AR-MOEA multi-objective optimization algorithms is investigated using the proposed test suite. The obtained numerical results indicate that seeding the initial population with feasible solutions helps the foregoing algorithms maintain a better balance between convergence and diversity. The statistical results form a baseline for future studies on developing efficient multi-objective structural optimization techniques.
- Article Citation - WoS: 7Citation - Scopus: 8A Standard Benchmarking Suite for Structural Optimization Algorithms: Iscso 2016-2022(Elsevier Science inc, 2023) Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Azad, Sina Kazemzadeh; Azad, Saeıd Kazemzadeh; Department of Civil Engineering; Department of Civil EngineeringBenchmarking is an essential part of developing efficient structural optimization techniques. Despite the advent of numerous metaheuristic techniques for solving truss optimization problems, benchmarking new algorithms is often carried out using a selection of classic test examples which are indeed unchallenging for contemporary sophisticated optimization algorithms. Furthermore, the limited optimization results available in the literature on new test examples are usually not accurately comparable. This is typically due to the lack of infromation about the performance of the investigated algorithms and the inconsistencies between the studies in terms of adopted test examples for benchmarking, optimization problem formulation, maximum number of objective function evaluations and other similar issues. Accordingly, there exists a need for developing new standard test suites composed of easily reproducible challenging test examples with rigorous and comparable performance evaluation results of algorithms on these test suites. To this end, the present work aims to propose a new baseline for benchmarking structural optimization algorithms, using a set of challenging sizing and shape optimization problems of truss structures selected from the international student competition in structural optimization (ISCSO) instances. The most recent six structural optimization examples from the ISCSO are tackled using a representative metaheuristic structural optimization algorithm. The statistical results of all the optimization runs using the proposed benchmarking suite are provided to pave the way for more rigorous benchmarking of structural optimization algorithms.