Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Al-Noaimat, Yazeed A. A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Influence of Cement Replacement by Calcinated Kaolinitic and Montmorillonite Clays on the Properties of Mortars
    (Springer Heidelberg, 2023) Al-Noaimat, Yazeed A. A.; Akis, Tolga
    This study aims to investigate the decomposition and pozzolanic reactivity of two different clays (kaolinitic and montmorillonite) from different origins and to determine their effects after calcination on the properties of cement mortars when used to replace Portland cement partially. Mineralogical and chemical compositions of the clay samples were determined using XRD (X-ray Diffractometer) and XRF (X-ray Fluorescence) tests, respectively. TG-DTA (Thermogravimetry-Differential Thermal Analyses) was used to determine the temperature profiles and the burning temperatures of the clays. The density and fineness of the burnt clays were also determined. In order to investigate the optimum material properties, different burning temperatures and replacement levels were considered. It was found that for all temperatures, the two burnt clays possess good pozzolanic activity. The highest compressive strength and lowest water absorption capacity were achieved when the clay determined as kaolinitic was burned at 700 & DEG;C and with 10% replacement level. While for the clay determined as montmorillonite, the optimum properties were obtained at 700 & DEG;C with a 20% substitution level. Kaolinite had better pozzolanic reactivity than montmorillonite, achieving higher strength performance with lower water absorption when partially replaced with cement. Moreover, it had compressive strength values even higher than plain cement.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback