Browsing by Author "Abed, Tamara Y."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 14Citation - Scopus: 15Investigation of the Physical Properties of the Yb Nanosandwiched Cds Films(Elsevier Science Sa, 2018) Abed, Tamara Y.; Qasrawi, A. F.; Al Garni, S. E.In this study, the effects of the sandwiching of a 70 nm thick ytterbium film between two layers of CdS on the structural, compositional, optical and electrical properties are investigated. The X-ray diffraction, scanning electron microscopy, energy dispersion X-ray, visible light spectroscopy and impedance spectroscopy techniques are employed to achieve these effects. It was observed that, the nanosandwiching of Yb between two 500 nm thick films of CdS enhances the crystalline nature of the films without altering the lattice parameters. Particularly, the grain size is increased by 25%, the strain, the defect density and the stacking faults are reduced by 31.5%, 43.7% and 25%, respectively. Optically, the Yb nanosandwiching is observed to enhance the visible light absorbability by at least 2.7 times of the whole range and by 8 times at 1.64 eV. The enhancement of the absorbability is associated with shrinking in the band gap and more interband states. In addition, an increase in the real part of the dielectric constant by 54% is observed when Yb was nanosandwiched in the CdS structure. The modeling of the imaginary part allowed exploring the electron-plasmon interaction parameters. A remarkable increase in the drift mobility from 281 to 996 cm2/Vs associated with plasmon frequency enhancement from 0.84 to 1.38 GHz was determined upon Yb nanosandwiching. The effectiveness of this modeling was verified from the impedance spectra in the frequency domain of 0.01-1.80 GHz, which revealed wave trapping property of ideal values of return loss at notch frequency of 1.35 GHz. Furthermore, the electrical resistivity measurements on the studied samples have shown that the presence of Yb reduced the electrical resistivity and shifts the donor level closer to the conduction band of CdS. The studies nominate the nanosandwiched CdS for use in optical and microwave technologies as dual devices. (C) 2017 Elsevier B.V. All rights reserved.Article Citation - WoS: 7Citation - Scopus: 7Structural and Dielectric Properties of Ba1-x< Solid Solutions(Wiley-v C H verlag Gmbh, 2021) Qasrawi, A. F.; Sahin, Ethem Ilhan; Abed, Tamara Y.; Emek, MehribanHerein, lanthanum doping effects on the structural, dielectric, and electrical properties of Ba1-xLax(Zn1/3Nb2/3)O-3 (BZN) solid solutions are focused upon. The La contents which are varied in the range of 0.02-0.20 exhibit a solubility limit of x = 0.02. Although minor phases of Ba5Nb4O15 and Ba3LaNb3O12 appear for samples doped with La contents of x = 0.05 and x = 0.10, they play no remarkable role for the enhanced structural and dielectric properties of BZN. The La doping content of x = 0.02 succeeds in increasing the crystallite size by 51.16% and lowering the microstrain by 34.18% and defect concentration by 63.10%. La-doped BZN ceramics display higher values of relative density and electrical conductivity. The analyses of the dielectric spectra as a function of temperature display dielectric relaxation behavior above 120 degrees C. In the temperature range of 20-120 degrees C, La doping changes the temperature coefficient of dielectric constants from +30 ppm degrees C-1 in pure samples to -341 ppm degrees C-1 in samples doped with La contents of x = 0.10. The enhancements in structural parameters, density values, and dielectric responses that are achieved via La doping make BZN ceramics more suitable for electronic device fabrication.Article Citation - WoS: 8Citation - Scopus: 9Structural and Optoelectronic Properties of Cds/Y Thin Films(Elsevier Science Sa, 2019) Qasrawi, A. F.; Abed, Tamara Y.In the current study, the structural, optical, photoelectrical and electrical properties of CdS/Y/CdS thin films are investigated. The current design include the evaporation of a layer of 70 nm thick yttrium between two layers of CdS. Each CdS layer is of thickness of 500 nm. It is observed that the yttrium slab increased the microstrain, defect density, stacking faults and decreased the grain size and redshifts the indirect allowed transitions energy band gap of CdS. In addition an enhancement by similar to 5 times in the light absorbability is detected at 1.74 eV. The enhanced absorbance results in increasing the photocurrent by similar to 21 times and changed the recombination mechanism from a trap assisted recombination to supralinear recombination mechanisms. Moreover, the ac signal analysis in the frequency domain of 10-1800 MHz has shown that the yttrium forces the CdS to exhibit negative capacitance effect and make it behave as band stop filter with notch frequency of 1520 MHz. The quality of the CdS/Y/CdS films as microwave cavities are screened by the evaluation of the return loss which revealed good features of the nanostructured films as microwave receivers.

