Farklı koşullarda görüntü algılama algoritmaları YOLO ve faster R-CNN'nin karşılaştırılması

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Information Systems Engineering
Information Systems is an academic and professional discipline which follows data collection, utilization, storage, distribution, processing and management processes and modern technologies used in this field. Our department implements a pioneering and innovative education program that aims to raise the manpower, able to meet the changing and developing needs and expectations of our country and the world. Our courses on current information technologies especially stand out.

Journal Issue

Abstract

Bu tezde, hem zorlu hava koşullarında hem de karanlıkta daha iyi nesne tespiti açısından YOLOv4 ile YOLOv3 ve Faster R-CNN'yi karşılaştırıyoruz. Yağmurlu, sisli ve karlı hava koşullarında ve hatta geceleri yayalar, arabalar, otobüsler ve motosikletler gibi hareket eden nesneleri tespit etmek zor olabilir. Bu çalışma, hiçbirinin başlangıçta kötü hava koşullarında veya geceleri performans göstermesinin amaçlanmadığını akılda tutarak, bu tür durumlarda hangisinin en iyi performansı gösterdiğini belirlemek için üç modülü değerlendirmeyi amaçlamaktadır. Bu çalışma Tesla P4 GPU, 12GB RAM kullanılarak yapılmıştır. Bu algoritmaları, YOLOv4'ün 40.000 yineleme, 72 mAP ve 0.63 geri çağırma ile en iyi sonuçları aldığı bir açık görüntü veri seti ile eğittik. Öte yandan, YOLOv3 36000 yinelemede, 65.53 mAP'de ve 0.54 geri çağırma'da maksimum puan almıştır. Son olarak, Faster R-CNN 36000 yineleme, 51 mAP ve 0.49 geri çağırma elde etmiştir. Algılama performansı değerlendirmesi açısından, 30 FPS ile videoda YOLOv4 42 FPS'de, YOLOv3 37 FPS'de ve Faster R-CNN 10 FPS'de performans göstermiştir. Elde edilen sonuçlara göre, YOLOv4, YOLOv3 ve Faster R-CNN'ye kıyasla en iyi performansı göstermiştir.
In this thesis, we compare YOLOv4 with YOLOv3 and Faster R-CNN in terms of better object detection in both challenging weather conditions and darkness. Moving objects such pedestrians, cars, buses and motorcycles can be difficult to detect in rainy, foggy and snowy weather conditions or even at night. This study is aimed at evaluating the three modules to determine which perform best in such circumstances, bearing in mind that none of them was initially intended to perform in bad weather conditions or at night. This Study is done by utilizing Tesla P4 GPU, with 12GB RAM. We trained these algorithms with an Open-Image dataset, where YOLOv4 has scored the best results at 40,000 iterations, 72 mAP, and 0.63 Recall. On the other hand, YOLOv3 has scored maximum at 36000 iterations, 65.53 mAP, and 0.54 Recall. Finally, Faster R-CNN scored 36,000 iterations, 51 mAP, and 0.49 Recall. In terms of detection performance evaluation, YOLOv4 performed at 42 FPS, while YOLOv3 was at 37 FPS and Faster R-CNN at 10 FPS in video with 30 FPS. Based on the results, YOLOv4 has performed the best in comparison to YOLOv3 and Faster R-CNN.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

105