Poly(ε-caprolactone)/Chitosan Nanostructures for Cell Cultivation

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Events

Abstract

Hybridization of synthetic poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop PCL/chitosan core-shell nanostructures for cell cultivation was aimed in this study. Coaxial electrospinning method was used for the fabrication of the nanostructures. The characterizations of the samples were done by X-ray photoelectron spectroscopy (XPS) analyses and mechanical tests. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies, MTT assay and Confocal Laser Scanning Microscopy (CLSM), carried out with L929 ATCC CCL-1 mouse fibroblast cell line, proved the biocompatibility of all materials. The cell viability on the hybrid nanostructures was ~two times better then on tissue culture polystyrene (TCPS) because of its three dimensional (3D) extracellular matrix (ECM)-like structure compared to 2D flat surface of commercially cell compatible TCPS. The performance was ~two times and ~ten times better compared to single PCL and single chitosan, respectively, even though both fabricated similarly by electrospinning as non-woven fibrous structures, because were either too hydrophobic or too hydrophilic to maintain cell attachment points. © Springer Nature B.V. 2020.

Description

Keywords

Chitosan, Core-shell, Electrospinning, Fibroblast, PCL

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q4

Source

NATO Science for Peace and Security Series B: Physics and Biophysics

Volume

Issue

Start Page

459

End Page

464

Collections