Evaluation of Multivariate Adaptive Regression Splines for Prediction of Kappa Factor in Western Turkiye

dc.contributor.author Kurtulmus, T. O.
dc.contributor.author Yerlikaya-Ozkurt, F.
dc.contributor.author Askan, A.
dc.date.accessioned 2024-09-10T21:35:57Z
dc.date.available 2024-09-10T21:35:57Z
dc.date.issued 2024
dc.description.abstract The recent seismic activity on the west coast of Turkiye, including the Aegean Sea region, indicates that a closer focus is necessary on this region. Located in an active tectonic regime of north-south extension with multiple basins on soft soil deposits, the region has a high seismic hazard. Recently, as a combination of basin effects and building vulnerability, the October 30, 2020, Samos event (Mw = 7.0) caused localized significant damage and collapse in Izmir city center despite the 70 km distance from the earthquake source. In spite of this activity, studies on site characterization and site response modeling, including local velocity models and kappa estimates, are still limited in this region. Kappa values exhibit regional characteristics, which necessitates local kappa estimates from past earthquake data for use in region-specific applications. To make the prediction, we used three-component strong ground motion records from accelerometer stations with known VS30 values in western Turkiye that are a part of the Disaster and Emergency Management Presidency's Turkish National Strong Ground Motion Observation Network. Multiple linear regression (MLR) and multivariate adaptive regression splines (MARS) algorithms have been implemented to build the prediction model. Three factors, such as distance, magnitude, and site class, are included in the kappa evaluation process. The performance of the models in kappa evaluation is calculated based on wellknown accuracy measures. The MARS model showed better performance compared to MLR over the selected sites concerning all performance measures. This finding may challenge the most commonly assumed linear models of kappa in the literature. en_US
dc.identifier.doi 10.1007/978-3-031-57357-6_13
dc.identifier.isbn 9783031573590
dc.identifier.isbn 9783031573576
dc.identifier.isbn 9783031573569
dc.identifier.issn 2366-2557
dc.identifier.issn 2366-2565
dc.identifier.scopus 2-s2.0-85197367239
dc.identifier.uri https://doi.org/10.1007/978-3-031-57357-6_13
dc.identifier.uri https://hdl.handle.net/20.500.14411/7394
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof Lecture Notes in Civil Engineering en_US
dc.relation.ispartofseries Lecture Notes in Civil Engineering
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject High-Frequency Attenuation-Kappa (HFA-κ) en_US
dc.subject Multiple Linear Regression (MLR) en_US
dc.subject Multivariate Adaptive Regression Splines (MARS) en_US
dc.subject Western Türkiye en_US
dc.title Evaluation of Multivariate Adaptive Regression Splines for Prediction of Kappa Factor in Western Turkiye en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Yerlikaya Özkurt, Fatma
gdc.author.scopusid 8534505400
gdc.author.scopusid 36015912400
gdc.author.scopusid 35809826800
gdc.author.wosid Kurtulmus, Tevfik/P-9186-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Kurtulmus, T. O.] Dokuz Eylul Univ, Dept Geophys Engn, Izmir, Turkiye; [Yerlikaya-Ozkurt, F.] Atilim Univ, Dept Ind Engn, Ankara, Turkiye; [Askan, A.] Middle East Tech Univ, Dept Civil Engn, Ankara, Turkiye en_US
gdc.description.endpage 162 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 157 en_US
gdc.description.volume 401 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4399571286
gdc.identifier.wos WOS:001516454500013
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Multivariate adaptive regression splines (MARS)
gdc.oaire.keywords High-frequency attenuation-kappa (κ)
gdc.oaire.keywords Multiple linear regression (MLR)
gdc.oaire.keywords Western Türkiye
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0201 civil engineering
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.31
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Yerlikaya Özkurt, Fatma
gdc.wos.citedcount 0
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections