Bluetooth Sinyallerinin Rf Parmak İzi Yöntemi ile Sınıflandırılmasında Öznitelikler ve Sınıflandırıcıların Değerlendirilmesi

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Bu tez çalışması, kablosuz ağların güvenliği için fiziksel katmanda özgün yöntemler geliştirilmesi üzerinedir. Bunun için, RF parmak izi kullanılarak, Bluetooth (BT) sinyalleri üzerinde çalışılmıştır. RF parmak izi tespiti için kapsamlı BT sinyalleri kullanılmıştır. Bu kapsamda, 20 farklı marka, model ve seride BT cihazına yönelik kayıtlar toplanmıştır. Her bir cihazdan da 150 sinyal kaydı alınmıştır. Bu çalışma ile Hilbert-Huang Dönüşümü (HHT) ilk defa BT cihaz kimliklendirmesinde kullanılmıştır. Amprik Kip Ayrıştırma (EMD) ve Hilbert Dönüşümü kullanımı ile HHT tekniği, zaman-frekans-enerji dağılımları üzerinde çalışma imkanı vermektedir. Sinyal enerji zarfı kullanılması suretiyle geçici rejim sinyalleri bazı iyileştirmeler ile tespit edilmektedir. Geçici rejim sinyalleri ile zaman-frekans-enerji dağımları üzerinden toplam 13 farklı öznitelik çıkarılmaktadır. Öznitelikler, kullanılabilirlik açısından ön işleme tabi tutulmaktadırlar. Ardından aynı veri seti ve öznitelikler üzerinde farklı sınıflandırıcılar çalıştırılarak, sınıflandırıcıların başarım analizi de ilk defa bu çalışmada sunulmaktadır. Sınıflandırıcı başarım analizleri 8 dB ile 30+ dB arasında farklı sinyal-gürültü oranlarında yapılmaktadır. Sınıflandırma başarım sonuçları yöntemin kullanılabilirliğini göstermektedir.
In this thesis, we introduced a novel technique to enhance the security at physical layer of wireless networks. This is based on the use of radio freqency (RF) fingerprinting for Bluetooth (BT) signals. BT signal records are acquired from twenty different cell phone brands, models, and serial numbers. One hundred fifty records are collected from each device. For the first time, Hilbert Huang Transform (HHT) are used for the BT device identification with such huge data set. By means of the signals' energy envelopes with some improvements, the transient signals are detected accurately. Through the Empirical mode decomposition (EMD) and Hilbert Transform (HT), the HHT is implemented to obtain Time Frequency Energy Distributions (TFED) of the detected transients. Thirteen features are extracted from the signals' transients and their TFEDs. The extracted features are pre-processed to enhance their usability. Different classifiers are employed with the extracted features for device identification, and comparative analysis of the classifiers is also provided. The classifier performance is examined for different SNR levels from 8 dB to 35+ dB . The identification performance demonstrates the feasibility of the method.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

115

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo