İşaret Dili Çevirmen Sistemi Tasarımı ve Uygulaması

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Events

Abstract

Sağlıklı ve sağır insanlar arasında yorumlama stratejileri tasarlamak için çok sayıda çaba sarf edilmiştir. Bu sistemlerin en önemlilerinden biri İnsan-Bilgisayar-Etkileşim (HCI) sistemleri olarak adlandırılan sistemlerdir. Bu alanda son yıllarda birçok işaret dili simülasyon çalışması geliştirilmektedir. Bu çabalar en fazla İşaret Dili'ni İngilizce konuşma ve metne, ayeti ise İngilizceye dönüştürmek için çalışıldı. Genellikle sağlıklı kişilerle Arap sağırları arasında minimum etkileşim vardır. Bu nedenle, normal kişiler ve Arap sağır topluluğu arasında daha iyi bir iletişim sağlamak için ArSL'yi Arapça konuşmaya veya metne çevirebilen bir dönüştürme sistemi tasarlamak çok önemlidir. Bu tezde, Konuşmadan İşaret diline çeviri sistemi yapılacaktır; hedef, Arap harflerinin konuşma sinyallerini standart Arap işaret diline çevirebilen bir çevirmen şeması tasarlamaktır. Bu devre, sağırlar ve normal insanlar arasındaki iletişim gibi çok sayıda uygulama için kullanılabilecek insan dostu bir program şemasını gerçekleştirmek için kullanılabilir. Sistem tasarım gereksinimlerini karşılamak için, veri toplama için konuşma sinyallerinin kaydedilmesi, ön işlemeden sonra özellik çıkarımı ve tanıma son adımı dahil olmak üzere çeşitli aşamalar gerçekleştirilmiştir. Daha sonra sistem, konuşulan harfin tersi olan parmak hareketlerinin görüntüsünü göstermek için çevirmen yapısına tanıma faktörlerini sağlar. Bu çalışmada Örüntü Tanıma Sinir Ağı (PRNN) kullanılmıştır. Girdi örneklerini istenen sınıflara ayırma yeteneğine sahip ileri beslemeli bir ağdır. Ağ, toplam 28 ana Arap harfinin her harfi için 20 örnek olmak üzere 560 eğitim örneği ile geri yayılım algoritması ile eğitilmiştir. Ardından, PRNN modelinin eşleşen çıktı etiketlerini ne kadar uygun tahmin ettiğini görmek için eğitilen model sırasıyla 140 ve 140 veri seti ile doğrulandı ve test edildi. Ağ, 28 sınıfın (harflerin) tamamı için başarıyla eğitilmiştir. Tanıma, %98'e varan mükemmel bir teşhis oranıyla sağlandı.
Numerous efforts have been to design interpretation strategies between the healthy and deaf people. One of the most important of these systems is what called as Human-Computer-Interaction (HCI) systems. Many simulation works of sign language are evolved in the last years in this field. At most, these efforts have been worked to convert Sign Language into English speech and text, and verse versa. Usually there is minimal interaction between healthy persons and the Arabic deaf persons. So it is very important to design a conversion system that can translate ArSL into Arabic speech or text and vice versa to provide a better communication between normal persons and Arab deaf community. In this thesis, a translation system for Speech to Sign language will be accomplished; the target is to design a translator scheme that can translate the speech signals of Arabic letters into display the standard Arabic sign language. This circuit can be used to realize a human-friendly program scheme that can be used for numerous applications such as communication between the deaf and the normal people. Several stages have been carried out to gratify the system design requirements, including: recording the signals of speech for data collection, feature extraction after pre-processing, and the recognition final step. Then, the system provides the recognition factors to the translator structure, to display image of movements of fingers that antipodean the spoken letter. In this work, Pattern Recognition Neural Network (PRNN) was used. It is a feedforward network that has an ability of classifying input samples into desired classes. The network was trained with back-propagation algorithm by 560 training samples, 20 samples for each letter of the entire 28 main Arabic letters. Then, the trained model was validated and tested with 140 and 140 dataset respectively, to see how fit the PRNN model predicts the matching data set of output labels. The network is successfully trained for all 28 classes (letters). The recognition was achieved with an excellent diagnosis rate of up to 98%.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

76